IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

5741

Efficient Oblivious Query Processing for
Range and kNN Queries

Zhao Chang

, Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev Balasubramonian

Abstract—Increasingly, individuals and companies adopt a cloud service provider as a primary data and IT infrastructure platform. The
remote access of the data inevitably brings the issue of trust. Data encryption is necessary to keep sensitive information secure and
private on the cloud. Yet adversaries can still learn valuable information regarding encrypted data by observing data access patterns.
To solve such problem, Oblivious RAMs (ORAMs) are proposed to completely hide access patterns. However, most ORAM
constructions are expensive and not suitable to deploy in a database for supporting query processing over large data. Furthermore, an
ORAM processes queries synchronously, hence, does not provide high throughput for concurrent query processing. In this article, we
design a practical oblivious query processing framework to enable efficient query processing over a cloud database. In particular, we
focus on processing multiple range and kNN queries asynchronously and concurrently with high throughput. The key idea is to integrate
indices into ORAM which leverages a suite of optimization techniques (e.g., oblivious batch processing and caching). The effectiveness
and efficiency of our oblivious query processing framework is demonstrated through extensive evaluations over large datasets. Our
construction shows an order of magnitude speedup in comparison with other baselines.

Index Terms—Data privacy, oblivious RAM, oblivious query processing, range and kNN query

1 INTRODUCTION

NCREASINGLY, individuals and companies choose to move

their data and IT operations to a cloud service provider
(e.g., Azure, AWS) and use the cloud as their primary infra-
structure platform. While utilizing a cloud infrastructure
offers many attractive features and is a cost-effective solu-
tion in many cases, the potential risk of compromising sen-
sitive information poses a serious threat.

A necessary step for keeping sensitive information secure
and private on the cloud is to encrypt the data. To that end,
encrypted databases such as Cipherbase [1], [2], CryptDB [3],
TrustedDB [4], SDB [5], and Monomi [6], as well as various
query execution techniques over encrypted databases [7], [8],
[9], [10] have been developed. But query access patterns over
an encrypted database can still pose a threat to data privacy
and leak sensitive information, even if the data is encrypted
before uploading to the cloud and a secure query processing
method over encrypted data is used [11], [12], [13], [14]. Islam
et al. [15] demonstrate that an attacker can identify as much as
80 percent of email search queries by observing the access pat-
tern of an encrypted email repository alone. Moreover, by

e Zhao Chang is with School of Computer Science and Technology, Xidian Uni-
versity, Xi'an, Shaanxi 710071, China. E-mail: changzhao@xidian.edu.cn.

e Dong Xie is with School of Electrical Engineering and Computer Science,
The Pennsylvania State University, University Park, PA 16802 USA.
E-mail: dongx@psu.edu.

o Feifei Li is with Alibaba Group, Hangzhou, Zhejiang 311121, China.
E-mail: lifeifei@alibaba-inc.com.

o Jeff M. Phillips and Rajeev Balasubramonian are with School of Comput-
ing, University of Utah, Salt Lake City, UT 84112 USA.

E-mail: {jeffp, rajeev}@cs.utah.edu.

Manuscript received 5 Oct. 2019; revised 18 Oct. 2020; accepted 17 Feb. 2021.
Date of publication 22 Feb. 2021; date of current version 7 Nov. 2022.
(Corresponding author: Zhao Chang.)

Recommended for acceptance by P. Pietzuch.

Digital Object Identifier no. 10.1109/TKDE.2021.3060757

counting the frequency of accessing data items from the clients,
the server is able to analyze the importance of different areas in
the database. With certain background knowledge, the server
can learn a great deal about client queries and/or data. For
example, knowing that the database stores spatial POIs from
NYC, the most frequently accessed records are probably from
Manhattan area [11]. The recent Spectre attack [16] shows that
potentially vulnerable code patterns can be exploited easily by
engaging speculation features in processors. At its heart, the
attack takes advantage of the fact that internal program secrets
are betrayed by the program’s access pattern. It thus highlights
the importance of ORAM primitives in protecting an
application’s access pattern and its sensitive data.

The examples above highlight the necessity of hiding the
access patterns of clients” operations on a cloud and protect
against the sensitive information leakage. To that end,
Oblivious RAM (ORAM) is proposed by Goldreich [17] and
Ostrovsky [18] to protect the client’s access patterns from
the cloud. It allows a client to access encrypted data on a
server without revealing her access patterns to the server.

However, most existing practical ORAM constructions
are still very expensive, and not suitable for deployment in a
database engine to support query processing over large data
[11]. Furthermore, an ORAM by itself does not support
query-level concurrency, i.e., an ORAM processes incoming
queries synchronously: a new query request is not processed
until a prior ongoing query has been completed. This creates
a serious bottleneck under concurrent loads in a database set-
ting with multiple clients. Many ORAM constructions [17],
[19], [20], [21], [22], [23] do not even support operation-level
concurrency, i.e., these ORAMs handle operations (each oper-
ation is to read or write a block) synchronously. Recent studies
have addressed this issue and proposed various parallel
ORAMs at the storage level that can handle operations asyn-
chronously, e.g., PrivateFS [24], Shroud [25], ObliviStore [26],

1041-4347 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-6846-7614
mailto:changzhao@xidian.edu.cn
mailto:dongx@psu.edu
mailto:lifeifei@alibaba-inc.com
mailto:jeffp@cs.utah.edu
mailto:rajeev@cs.utah.edu

5742

CURIOUS [27], and TaoStore [28], hence, achieving operation-
level concurrency at the storage level.

Since each query (e.g., a range or a kNN query) consists
of a sequence of read operations (read a block, which will
also result in write operations when operating over an
ORAM structure), parallel ORAMs with their support for
operation-level concurrency are useful in reducing query latency,
which will improve system throughput indirectly, but they
are not designed for improving system throughput. For example,
a single expensive query that consists of many operations
can still seriously hurt system throughput even if its latency
has been reduced. In short, operation-level concurrency
using a parallel ORAM storage engine does not lead to
query-level concurrency in a query engine.

Just to clarify, our query-level concurrency works in a
batched manner. It means that if any query ¢; (in the last
batch) is currently executed and a new query ¢, arrives in
the meantime, we will not run ¢, instantly. Query ¢, will not
start until all the queries in the last batch (including ¢;) are
completed. If another query g3 arrives before the last batch
(containing ¢;) is completed, the execution of ¢; and g3 can
be performed concurrently in the next batch. The details
will be demonstrated in Sections 4.4 and 4.5.

Prior efforts mainly focus on designing efficient query
processing protocols for specific types of queries, e.g., join
[29], [30] and shortest path [19], [31]. Some studies focus on
providing theoretical treatment for SQL queries [13], but are
of only theoretical interest. There are also investigations
working on designing oblivious data structures [14], [32] that
help improve the efficiency of certain queries (e.g., binary
search) compared to processing these queries using a stan-
dard ORAM construction. The idea is that for some query
algorithms which exhibit a degree of predictability in their
access patterns, it will be beneficial to have customized and
more efficient ORAM constructions [32].

To the best of our knowledge, Opaque [12] and ObliDB [33]
are the state-of-the-art studies concerning generic oblivious analyt-
ical processing. However, to support kNN or range queries, Opa-
que needs to perform expensive scan-based operations (see
Baseline part in Section 3). ObliDB [33] exploits indexed storage
method and builds oblivious B+ trees to support point and
range queries. In their implementation, data is fixed to one
record per block. But in our implementation of oblivious B-tree
in Section 4.2, each block contains B bytes, and the number of
records that fit in each data block is @(B) rather than one.
Hence, our design is more suitable for hard disk storage and
reduces the number of disk seeks in query processing. We also
leverage a suite of optimization techniques including batch
processing and ORAM caching. Extensive experimental evalua-
tion shows that our design with those optimizations achieves an
order of magnitude speedup in terms of query throughput, in
comparison with Opaque method (without the distributed stor-
age) and the basic oblivious index baseline (similar to ObliDB).

Our Contributions. We propose a general oblivious query
processing framework (OQF) for cloud databases, which is
efficient and practical (easy to implement and deploy) and
supports concurrent query processing (i.e., concurrency
within a query’s processing) with high throughput. This
work focuses on (one and multi-dimensional) range and
kNN queries, and explores the design of OQF that is much
more efficient than baseline approaches. The proposed

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

framework can be extended to handle other query types
(e.g., joins), which is an active ongoing work. In particular,

e We formalize the definition of an oblivious query
processing framework (OQF) and review the back-
ground of oblivious query processing in Section 2.

e We describe the architecture of our OQF design in
Section 3, and a present baseline instantiation based
on a standard ORAM protocol.

e We present our design of an OQF in Section 4 that
achieves concurrent query processing with high
throughput using the idea of integrating an (oblivi-
ous) index into ORAM and also leveraging a suite of
optimization techniques (e.g., oblivious batch proc-
essing and caching).

e We conduct extensive experiments in Section 5 using
our oblivious query processing framework on large
datasets. The results demonstrate a superior perfor-
mance gain (at least one order of magnitude)
achieved by our design over baseline constructions.

The paper is concluded in Section 7 with a review of

related work in Section 6.

2 PRELIMINARIES

2.1 Problem Definition and Security Model

Consider a client who would like to store her data D on a
remote server (e.g., cloud) and ask other clients (including
herself) to issue queries (such as range and k nearest neigh-
bor queries). A trusted coordinator collects queries from dif-
ferent clients and answers them by interacting with the
server. The communication between clients and the coordi-
nator are secured and not observed by the server. Index
structures such as B-tree and R-tree are often built to enable
efficient query processing. Suppose the query sequence to
the server for queries collectively issued by all clients is
{(opy,arg;), ..., (op,,,arg,,)}, where op; is a query type
(which may be range or kNN in our context) and arg; pro-
vides the arguments for the ith query ¢;. Our goal is to pro-
tect the privacy of clients by preventing the server from
inferring knowledge about the queries themselves, the
returned results, and the database D.

While traditional encryption schemes can provide confi-
dentiality, they do not hide data access patterns. This ena-
bles the server to infer the query behavior of clients by
observing access locality from the index structure and the
data itself. Formally, our problem can be defined as below:

Definition 1. ObliviousQueryProcessing. Given an input
query sequence 6: {(Opll argl)/ (Op2/ %LI‘gQ), R4 (Opm/ argm)}/
an oblivious query processing protocol P should interact with an
index structure I built on the server over the encrypted database
D to answer all queries in ¢ such that all contents of D and I
stored on the server and messages involved between the coordina-
tor and the server should be confidential. Denote the access pat-
tern produced by P for § as P(q). In addition to confidentiality,
for any other query sequence g, so that the access patterns P(q)
and P(q.) have the same length, they should be computationally
indistinguishable for anyone but the coordinator and clients.

Security Model. Note that multiple clients may exist and
retrieve the data as long as they are trusted by the client

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

CHANG ETAL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

who is the original data owner and follow the same client
side protocol. In this paper, we consider an “honest-but-
curious” server, which is consistent with most existing
work in the literature. To ensure confidentiality, the client
needs to store the secret keys of a symmetric encryption
scheme. The encryption should be done with a semantically
secure encryption scheme, and therefore two encrypted cop-
ies of the same data block look different [34]. The client
should re-encrypt a block before storing it back to the cloud
and decrypt a block after retrieving it. Since these encryp-
tion/decryption operations are independent of the design
of an OQF, we may omit them while describing an OQF.

Data is encrypted, retrieved, and stored in atomic units
(i.e., blocks), same as in a database system. We must make all
blocks of the same size; otherwise, the cloud can easily distin-
guish these blocks by observing the differences in size. We
use N to denote the number of real data blocks in the data-
base. Each block in the cloud or client storage contains B
bytes (note that the number of entries that fit in a block is
O(B) and the constants will vary depending on the entry
types, e.g., encrypted record versus encrypted index entry).

Definition 1 implies that we must make different access
types (read and write operations) indistinguishable. This is
achieved by performing read-then-write (potentially a dummy
write) operations, which is commonly used in existing ORAMs.
Our security definition requires indistinguishability only for
query sequences inducing access patterns of the same length.
We will discuss how to protect against volume leakage from
range query by introducing padding techniques in Section 4.6.

Definition 1 does not consider privacy leakage through
any side-channel attack like time taken for each operation
(timing attack). Existing work [35] actually offers mecha-
nisms for bounding ORAM timing channel leakage to a
user-controllable limit. Oblix [36] also considers any side-
channel leakage as out of scope. Orthogonal solutions [37],
[38] in Oblix also work for our setting.

Remarks. Note that our setting is that multiple clients submit
queries at any time instead of the scenario where one unique
client makes a large number of queries. The coordinator
runs the oblivious query algorithms acting as a trusted
middle layer between multiple clients and the untrusted
cloud (the same setting in TaoStore [28]). The coordinator
and the clients are in a closed and private internal network.
Analogously, ObliviStore [26] hosts the trusted compo-
nents in a small-scale private cloud, while outsourcing the
untrusted storage to a remote cloud. If the cloud has a
secure hardware that comes with trusted private memory
regions, e.g., the enclave from SGX [39], we can make it co-
located on the cloud, serving as the trusted coordinator.

2.2 ORAM and Oblivious Data Structure

Oblivious RAM. Oblivious RAM (ORAM) is first proposed by
Goldreich and Ostrovsky where the key motivation is to offer
software protection from an adversary who can observe the
memory access patterns. In the ORAM model, the client,
who has a small but private memory, wants to store and
retrieve her data using the large but untrusted server storage,
while preserving data privacy. Generally, ORAM is modeled
similar as a key-value store. Data is encrypted, retrieved, and
stored in atomic units (i.e.,, blocks) annotated by unique

5743

keys. An ORAM construction will hide access patterns of
block operations (i.e., get () and put ()) to make them com-
putationally indistinguishable to server.

An ORAM construction consists of two components:
anORAMdatastructure and anORAMqueryprotocol, where a
part of the ORAM data structure is stored on the server
side, and another (small) part of the ORAM data structure
is stored on the client side. Client and server then run the
ORAM query protocol to read and write any data blocks.

Path-ORAM. Path-ORAM is a key representative among
proposed ORAM constructions due to its good performance
and simplicity [11], [23]. It organizes the server side ORAM
structure as a full binary tree where each node is a bucket
that holds up to a fixed number of encrypted blocks (from
the client’s database), while the client hosts a small amount
of local data in a stash. Path-ORAM maintains the invariant-
that at any time, each block b is mapped to a leaf node cho-
sen uniformly at random in the binary tree, and is always
placed in some bucket along the path to the leaf node that b
is mapped to. The private stash stores a small set of blocks
that have not been written back to the server.

When block b is requested by the client, Path-ORAM pro-
tocol will retrieve an entire path, with the leaf node that b is
mapped to, from the server into the client’s stash. Then, the
requested block b is re-mapped to another leaf node, and
the entire path that was just accessed is written back to the
server. When a path is written back, additional blocks may
be evicted from the stash if the above invariant is preserved
and there is free space in some bucket along that path.

In this construction, the client has to keep a position map
to keep track of the mapping between blocks and leaf node
IDs, which brings a linear space cost to the client; note that
even though it is linear with N, the number of blocks in the
database, the mapping information is much smaller than
the actual database size. We may choose to recursively build
Path-ORAMSs to store position maps until the final level
position map is small enough to fit in client memory.

To store IV blocks of size B, a basic Path-ORAM protocol
requires O(log N + N/B) client side blocks and can process
each request at a cost of O(log N). In a recursive Path-
ORAM, the client needs a memory size of O(log N) and
each request can be processed in O(log gN - log N) cost.

Oblivious Data Structure. For certain data structure (such as
map and queue) whose data access pattern exhibits some
degree of predictability, one may improve the performance of
oblivious access by making these data structures “oblivious”
(in the memory hierarchy sense), rather than simply storing
(data and index) blocks from such a data structure bluntly
into a generic ORAM construction. Wang et al. [32] design
oblivious data structures and algorithms for some standard
data structures. In particular, they propose the methodology
to build oblivious data structures for AVL tree. The main idea
is that each node keeps the position map information of its
children nodes together with their page IDs. When retrieving
anode from this oblivious data structure, we acquire the posi-
tion map for its children simultaneously. Note that most
query algorithms over tree indices traverse the tree from the
root to the leaf. As a result, the client only needs to remember
the position tag for the root node block, and all other position
map information can be fetched on the fly from the oblivious
data structure stored on the server.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

5744
ORAM Data Structure C S
Secure Data Storage loud Storage
Untrusted
Trusted Oblivious Query Framework
ORAM Protocol Coordinator
ORAM Stash ORAM Cache
Results \\ Queries

Client § Client | Client § Client

Fig. 1. Oblivious query framework.

3 FRAMEWORK

Our proposed OQF consists of four parties: the data owner,
clients (data owner can be a client), a trusted coordinator,
and the server. The trusted coordinator has limited storage,
and answers queries from different clients by interacting
with the server while ensuring the security in Definition 1.

In a pre-processing step, the data owner partitions
records in the database D into blocks, encrypts these data
blocks, and builds an ORAM data structure (e.g., Path-
ORAM) over these data blocks. She then uploads both
encrypted data blocks and the ORAM data structure to the
server. She shares the encryption/decryption keys and
other metadata (e.g., position map in Path-ORAM), which
are needed to execute an ORAM protocol, with the coordi-
nator. The server stores the encrypted data blocks and the
ORAM data structure into a secure cloud data storage.

Subsequently, clients may issue (range and ANN) queries
against the cloud server through the coordinator. Using an
oblivious query algorithm that will be described later in
details, the coordinator reads/writes blocks from /to the server
based on an ORAM protocol and returns query results to the
clients. The clients and the coordinator are trusted. The com-
munication between them are secured and not observed by
the cloud. The oblivious query framework is shown in Fig. 1.

Note that an ORAM protocol refers to steps taken in order to
read or write a single data block securely and obliviously with the
help of the ORAM metadata on the coordinator and the
ORAM data structure on the server. The oblivious query
algorithm is constructed based on this ORAM protocol to
answer a range or kANN query securely and obliviously.

Baseline. The most straightforward solution is to encrypt
each data block from the database D, store these encrypted
blocks to the server, and process queries obliviously by scan-
ning through all the encrypted blocks over the coordinator.

Specifically, the coordinator can answer a range query
simply by retrieving each encrypted data block from the
server, decrypting it and checking all records in the block
against the query range. For a kNN query, the coordinator
will scan through all encrypted data blocks as well, calcu-
late the distance from each data point to the query, and
maintain a bounded priority queue to figure out the global
kNN result. Note that the coordinator has to retrieve every
encrypted block in a fixed order to process each query. From
the server’s perspective, the access pattern from the coordi-
nator is always the same, thus no information can be
inferred by observing access patterns. As a result, simple
encryption is enough and ORAM is not required.

This baseline is clearly very expensive, but simple to
implement. This is essentially the solution explored by the
recent work known as Opaque [12]. Opaque uses the above
baseline with a distributed cloud storage.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

PID isLeaf
Children keys

(a) Standard B-tree.

of children PID
Children PIDs

isLeaf pTag # of children
Children keys Children PIDs Children pTags

(b) Oblivious B-tree.

Fig. 2. B-tree internal node layout.

4 EFFICIENT OQF

4.1 Integrate an Index into ORAM

A better solution is to add an index (e.g., B-tree or R-tree)
over the database D before uploading data to the cloud. It
takes some care to utilize the index obliviously though.

The key idea is to ignore the semantic difference of the
(encrypted) index and data blocks from the data owner, and
store all the blocks into an ORAM construction, say Path-
ORAM. Take B-tree as an example: each node in a B-tree
can be organized in a disk page as shown in Fig. 2a; the
pointers to its children nodes in the tree are page IDs.
Hence, we can treat such pages as ORAM blocks uniquely
identified by their page IDs (i.e., ORAM block IDs).

In this case, the ORAM data structure on the server is the
Path-ORAM data structure over both encrypted index and
data blocks. The ORAM protocol is simply the read and
write (a single block) operations through Path-ORAM.

When answering a query, we follow the range or kNN
query algorithm in a B-tree or R-tree, and start with
retrieving the root block (of the index) from the server.
We then traverse down the tree to answer the incoming
query. Whenever we need a tree node that does not reside
in the coordinator memory, we retrieve the block by look-
ing up its block ID through the ORAM protocol. Intui-
tively, we query the index structure by running the same
algorithm as that over a standard B-tree or R-tree index.
The only difference is that we are retrieving index and
data blocks through an ORAM protocol with the help of
the ORAM data structure.

Suppose we exploit the basic Path-ORAM protocol as the
underlying ORAM protocol. Retrieving a block has O(log V)
overhead in both communication and computation, where N
is the total number of data blocks. The fanout for index blocks
is ®(B), where B is the block size in bytes. Now take a B-tree
point query as an example. Each point query would cost
O(log N -log N), where the height of B-tree is O(log gzN).
Recall that the basic Path-ORAM protocol requires O(log N +
N/B) client side memory to record the position map, which
may be not practical for a coordinator over a large dataset. To
address this problem, we can adopt recursive Path-ORAM
protocol which only requires O(log N) memory in the coordi-
nator but increases the cost of retrieving one block to
O(log N - log N). Hence, the above B-tree query algorithm
will cost O(log 4N - log N).

One can easily generalize this query algorithm to range
and kNN queries using the corresponding range and ANN
query algorithms for a B-tree or an R-tree.

4.2 Oblivious B-Tree and R-Tree

Another approach is to explore the idea of building an oblivi-
ous data structure [14], [32], which will eliminate the need of
storing any position map at the coordinator. In particular,
Wang et al. [32] leverage pointer-based technique to build an
oblivious AVL tree. In our design, we simply replace a stan-
dard B-tree or R-tree in Section 4.1 with an oblivious B-tree

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

CHANG ETAL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

B-Tree

root ! : retrieve root Client
2: retrieve child [rootID [rootPos |

back the

Fig. 3. An example of querying an oblivious B-tree.

or R-tree. Note that B-tree/ R-tree has much larger fanout in
index levels than AVL tree and then achieves a lower tree
height. Suppose NN is the number of real data blocks and B is
the block size in bytes. In B-tree/ R-tree, the fanout is ®(B)
and the tree height is O(log z3N); but in AVL tree, the fanout
is only two, which leads to O(log N) tree height. Since the
cost of searching over a tree index is related to the tree height,
oblivious B-tree/ R-tree achieves higher query performance
than oblivious AVL tree.

The main idea of building oblivious tree structures is
that each node in the index keeps the position map infor-
mation of its children nodes together with their block IDs.
Fig. 2b shows the new B-tree node for an oblivious B-tree.
When retrieving a node from the server using the ORAM
protocol, we have acquired the position map for its chil-
dren nodes simultaneously. Note that most query algo-
rithms over tree indices traverse the tree from the root to
leaf nodes. As a result, the coordinator only needs to
remember the position tag of the root node, and all other
position map information can be fetched on the fly as
part of the query algorithm.

As before, the Path-ORAM structure on the cloud stores
both index and data blocks and makes no distinction
between these two types of blocks. We illustrate how to
answer a query obliviously in this case, using again B-tree
point query as an example (see Fig. 3 for an illustration):

1) The coordinator retrieves the root node block from
the cloud through the Path-ORAM protocol by using
its position map, and then assigns the root node
block to a random leaf node ID in the Path-ORAM
tree by altering its position map.

2) By observing key values in the retrieved node b, the
coordinator decides which child node to retrieve
next and acquires its position map information
directly from the parent node b.

3) The coordinator retrieves the child node using the
position map acquired in the last step and assigns a
new random leaf node ID to the child node block by
altering the position map stored in its parent node.

4) Repeat Step 2 and 3 until the coordinator reaches a
leaf node. The record(s) that matches the point query
search key will be found.

Note that when retrieving any node b other than the root

node, we need to alter the position tag of its parent node to
store the fact that b is assigned to the path with a new

5745

random leaf node in the Path-ORAM tree. Thus, we need to
modify the Path-ORAM protocol slightly, to prevent the
protocol from writing an index block back to the cloud
while we are still traversing its descendants.

In summary, by integrating the position map information
to the block content of a tree node, we can avoid saving the
full position map in coordinator memory or using the
expensive recursive Path-ORAM construction. Specifically,
this new method requires O(log N) coordinator memory,
which includes the Path-ORAM stash (with O(log N) size)
and the memory needed (with O(log zN) size) to store the
traversed path for updating the position map information
recursively. Its query cost for each B-tree point query is
O(log gpN -log N), the same as that of using the original
Path-ORAM construction with a standard index.

Lastly, a similar design and analysis can be carried out
for constructing an oblivious R-tree from a standard R-tree;
we omit the details in the interest of space.

4.3 A Comparison of Different Designs

Table 1 compares Baseline (Opaque) in Section 3 (essen-
tially Opaque method [12] without distributed storage in
cloud), ORAM+Index in Section 4.1 (ORAM with a stan-
dard index) and Oblivious Index in Section 4.2. The com-
parison is based on B-tree point query in terms of cloud
storage, coordinator storage, number of communication
rounds per query, and computation overhead per query.
Recall that for all the designs, per query, number of
accessed blocks in the cloud, communication overhead in
bytes, and computation cost in the coordinator have the
same Big-O complexity. Hence, we use the computation
overhead to denote the Big-O complexity of those metrics.
Note that Oblivious Index saves the coordinator memory
size, but involves O(1) times more computation overhead
and communication rounds than ORAM-+Index to recur-
sively update the position map information to the server.
Therefore, Oblivious Index may be suitable when the coor-
dinator only has limited memory.

4.4 Optimizations

In most practical database applications with multiple cli-
ents, a critical objective is to improve the overall query
throughput. A useful optimization technique is to process
queries in batches. This allows the coordinator to retrieve
index and data blocks from the cloud in batch.

Batch processing brings the benefit of ORAM caching.
The coordinator can leverage a good caching strategy that
takes advantage of the access pattern for queries in the
same batch. In detail, the coordinator introduces an ORAM
buffer of a given size on her side, and the ORAM buffer
stores a set of blocks from the Path-ORAM structure on the
cloud that she has previously retrieved. If there is a buffer

TABLE 1
Comparison of Different Designs

Design Computation Overhead Cloud Storage Communication Round Coordinator Storage
Baseline (Opaque) O(N) O(N) O(N) 0o(1)

ORAM-+Index O(log gN -log N) O(N) O(log 5N) O(log N + N/B)
Oblivious Index O(log N - log N) O(N) O(log pN) O(log N)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

5746

hit for a subsequent block request, the coordinator does not
need to retrieve that block from the cloud again using the
expensive ORAM protocol. Note that each of these blocks
can be either an index or a data block from the original data-
base with an index (e.g., a B-tree/R-tree or an oblivious
B-tree/ R-tree).

An important and interesting challenge arises from this
discussion, which is how to design a good caching strategy
for the coordinator to improve the overall performance of
the proposed oblivious query processing framework.

4.4.1 ORAM Caching at the Coordinator

Formally, given a buffer size r (number of data blocks that
can be stored in the coordinator’s buffer) and a query batch
size g (g queries in one query batch), our objective is to
design a good ORAM caching strategy to reduce the cost of
processing a sequence of query batches obliviously and
improve the overall query throughput of the proposed
OQF, where the system query throughput is simply defined
as the number of queries processed per minute.

To illustrate the key idea of our design, we assume for now
that given a query batch with g queries {qi, ..., g}, the coor-
dinator is able to infer the set of blocks (index and data
blocks) to be retrieved by each query, i.e., there is a mapping
function & that takes a query ¢ and outputs the set of block
IDs that refers to blocks to be accessed while processing ¢.
We will discuss how to design h in Section 4.5.

The following analysis assumes the basic Path-ORAM
protocol, where the coordinator would traverse a whole
path (read-and-then-write) from the Path-ORAM structure
stored on the cloud server through Path-ORAM protocol,
when a cache miss happens for reading a particular block b.
Formally, the problem is reduced to the followings.

Given a query sequence of s query batches: {(qi1, .., qi4).
ooy (gs1, - -+, gsg)}, the ith batch needs to retrieve a set of m;
blocks with IDs {id; 1, ..., id;, } that will be accessed by (g 1,

.+, Qig)- Wealso let m = min{my, ..., ms}. When the context
is clear, we drop the subscript for a batch i. Our objective is to
design a good ORAM caching strategy to minimize the num-
ber of cache misses over the s batches, with the following con-
straint: queries within a batch can be processed in arbitrary
order, but queries across different batches cannot be re-
ordered. Hence, we can bound and adjust the query latency
for each query by tuning the query batch size g.

OfflineOptimalStrategy. In offline setting, the coordinator
knows block IDs from all (future) query batches. We denote
the optimal strategy for a given query sequence as opt.

OnlineStrategy. In online setting, the coordinator knows
only block IDs from the current query batch. The goal is to
find a strategy that enjoys a good competitive ratio [40]. Spe-
cifically, suppose 7 represents the class of all valid inputs
(each input in 7 is a sequence of batches of queries), A rep-
resents the class of all valid online algorithms for the
ORAM caching problem, and cost(A, I) represents the cost
of running algorithm A € A over an input / € Z. Then the
competitive ratio of A is

cost(A, I)
A) = max 252
A(A) Hlléizxcost(opt,l)’

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

where cost(A, I) (or cost(opt, I)) is proportional to the num-
ber of retrieved blocks from the cloud through ORAM.

ORAM Caching Strategy. We are given a query sequence
Q={(qi1, -, q1g)s - (@1, -+, qsg)} that will access a
block sequence @y = {(idi1, ..., idim,), ..., (ds1, ...,
idsm,)}. Whenever the coordinator needs to replace a
cached block, she evicts the block in her cache that is not
accessed until Furthest-In-Future (FIF) with regard to Q.
The evicted block is then re-mapped to a new leaf node ID
in Path-ORAM data structure, before being placed into the
private stash with the new mapping information.

Recall that in Path-ORAM protocol, when reading a
block b, an entire path (which contains b) will be retrieved
from the cloud. Here, we assume the coordinator only
caches the block b in her buffer and places other real blocks
along that path into the stash as that in the original protocol.

Under this setting, each cache miss (caused by the
request to access a block) leads to the same cost, which is to
read a block from the ORAM data structure in the cloud
using the ORAM protocol. Recall that the coordinator re-
orders the queries within a batch. After that, the ordering of
queries is fixed. This setting leads to the following result.
The proof is fairly straightforward, and hence omitted.

Theorem 1. For a query sequence with fixed ordering of queries,
the optimal offline method for our ORAM caching problem is
the FIF caching strategy.

The offline optimal method inspires us to design the follow-
ing online strategy. In online setting, the coordinator can only
see Qp; = {(idi1,...,idim,;)} for query batch @Q;=
{(gi1,...,q4)} After processing the jth query from @);, there
are two classes of blocks in the ORAM cache: classa : those
who will appear in {(g;jt1,---,4,)}; classb : those who will
not appear in {(¢; j+1,---,¢i4)}- A key observation is that if the
coordinator was to see the entire future query batches as in offline set-
ting, each block from classb should be evicted first before
evicting any block from classa. Each block in classb is guaran-
teed to be referenced only further-in-the-future than any block
in classa, and in the offline optimal method, evicted first.

This observation leads to the following online strategy.
At any point while processing a query batch, we perform
FIF for any blocks in the ORAM cache that belong to classa
as defined above at this point, and we use Least Recently
Used (LRU) for the remaining blocks in the ORAM cache
that belong to classb as also defined above. We always evict
a block from classb before evicting any block in classa, and
only start evicting blocks from classa if classb is already
empty. An evicted block is re-mapped to a randomly chosen
leaf node ID in Path-ORAM data structure and placed into
the private stash, waiting to be written back to the server.
We denote this algorithm as batch-FIF.

Theorem 2. ' If there are duplicate block IDs within any batch,
p(batch-FIF) < t (1 is the buffer size); otherwise,

A) If T < m, the competitive ratio p(batch-FIF) < 2;
B) Otherwise, the competitive ratio p(batch-FIF) < t.

1. Due to the space limit, all proofs of lemmas and theorems are
given in the supplemental material, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2021.3060757

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3060757
http://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3060757

CHANG ETAL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

4.4.2 Other Optimizations

Query Locality. The coordinator can re-order queries within
each query batch to improve their locality, which will lead
to better ORAM caching performance regardless of which
caching strategy is to be used. For one-dimensional queries,
this is easily done by sorting (based on the query point if it
is a kNN query or the left-range point if it is a range query).
For two-dimensional queries, we can leverage a space-fill-
ing curve, and use the z values of the query point for a ANN
query and the centroid of a range query box for sorting and
re-ordering queries in a batch.

Batch Writing. In the original protocol, for each read oper-
ation the coordinator needs to retrieve the entire path and
then write the same path back to the cloud. Details are rep-
resented in “Path-ORAM” part in Section 2.2. Instead of
immediately writing each path back to the cloud, we can
also introduce a batch concept to wait for retrieving A paths
and then write all the A paths back to the cloud at once.
Batch writing to tree-based ORAM is also leveraged in prior
studies [28], [36], [41]. Specifically, the coordinator can keep
the set H that stores the leaf node indices of the retrieved
paths, where max|H| = A\. During batch writing, she writes
the A paths in H back to the cloud from the bottom level to
the top level, which ensures that blocks in her cache and
stash can be pushed as deep down into the tree as possible.

Given a leaf node index z, let P(z, £) denote the bucket in
level ¢ of path P(x). Now for any given block b, for each leaf
node index z in H, if b is mapped to = (according to the posi-
tion map information), and the bucket P(x,) still has space
to hold more blocks, the coordinator pushes b into P(x,/)
and removes b from her cache or stash. The coordinator
repeats this process until no more blocks from her cache or
stash can be written back to one of the A paths.

Finally, for each leaf node index x in H and each level £ of
path P(z), if bucket location P(z,¢) still holds blocks with
the number less than the maximum capacity of a bucket, the
coordinator appends some randomly generated dummy
blocks to P(x, /) to fulfill its maximum capacity. Finally, she
writes all A paths in H back to the cloud and clears .

In our implementation, queries need to be blocked tem-
porarily while writing the A paths back to the cloud. As in
TaoStore [28], we can also keep an additional subtree struc-
ture for saving these paths in coordinator and asynchro-
nously write back the A paths in the background.

Partial Path Retrieval. In the original Path-ORAM proto-
col, for each block access operation, the coordinator needs
to retrieve a whole path from the cloud. With the ORAM
caching mechanism and batch writing optimization that we
have introduced, for each block access operation, the coordi-
nator only needs to retrieve a partial path, which is not kept
in her cache and stash, rather than a whole path in the origi-
nal Path-ORAM protocol. To be clear, this partial path oper-
ation is only performed as part of a batch retrieval, where
the part of the path not retrieved in this sub-operation is still
retrieved in a larger batch retrieval operation.

An example is shown in Fig. 4. Suppose that blocks along
the red-colored paths have already been retrieved and
cached by the coordinator. Now the coordinator needs to
retrieve the blue-colored path P(xz) for a block b, which is
mapped to the leaf level node with node ID . Here, she
only needs to retrieve the leaf bucket, since all the remaining

5747

Path-ORAM

—

o213 104105106 107
left(x) x right(x)
H=1{2,5,6}

Fig. 4. Partial path retrieval.

buckets (the dotted blue-colored part in path P(z)) have
already been retrieved.

To decide which part of P(z) to retrieve, the coordinator
builds a set H to store the leaf node indices of retrieved
paths. Given a path to be retrieved by the current operation,
identified by the leaf node ID z, she finds

left(z) =argmax,yy < ,

right(z) =argmin,cyy > .

The coordinator checks which part of P(z) is not covered
by P(left(z)) U P(right(z)) and only retrieves the blocks
from the partial path. Furthermore, and more importantly,
the coordinator can check this without the access to the
Path-ORAM'’s binary tree structure.

Theorem 3. Under partial path retrieval, for any path P(z),
each block is either retrieved or already in the stash.

Block Sorting. If the coordinator has the function i that
maps queries to block IDs to be accessed, she can further sort
the block IDs in the current batch based on their position tags
in Path-ORAM. This improves the performance when com-
bined with batch writing and partial path retrieval optimiza-
tions. For those optimizations to make sense, there must be
some blocks that reside in the overlap part of the A paths.
Sorting blocks based on their position tags aims to increase
the number of overlapping blocks. Intuitively, paths in Path-
ORAM that share more overlapping blocks will be put close
to each other in the block access sequence after sorting, due
to Path-ORAM'’s full binary tree structure. Then, more over-
lapping blocks along paths lead to less communication and
computation overhead in Path-ORAM. Besides, block sorting
also improves the performance of ORAM caching. It makes
duplicate block accesses occur in a sequential way, and the
coordinator only needs to retrieve each block once rather
than multiple times.

4.5 Query to Block ID Mapping
Lastly, in order to apply our ORAM caching algorithm, a
mapping function h that maps a query to a set of block IDs
is needed. These block IDs represent the index and data
blocks that the coordinator needs to retrieve from the cloud.
Intuitively, the coordinator caches only one specific level of
B-tree or R-tree index in her storage, which is a popular
tree-based ORAM optimization [41], [42], [43]. Since the fan-
out is large in a B-tree or R-tree index (see the analysis in
Section 4.1), this overhead to the coordinator’s storage is still
far less than storing the entire index. Given any query, the
coordinator first finds which set of blocks that she may need to
access by performing a local search algorithm on the cached
level of the index. More specifically, for every node « that is

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

5748

MBR|R; IR—‘|716|-— ———~i R-Tree
\ql (L1 Ri7 =H- —|

Fig. 5. An example of the set cover-based technique.

cached at the coordinator, we remember the set of index and
data blocks from the subtree of uw. Henceforth, the local
search will return the super set of index and data blocks a
query will need to access. This super set allows us to infer
the set covers of block IDs to access for all queries in a query
batch, and our caching decision will be made based on these
set covers of block IDs, instead of the exact set of block IDs.

We take range query in R-tree as an example, as shown in
Fig. 5. This R-tree index has three index levels and one leaf
level with data blocks. Each (index or leaf) node in the R-tree
is shown with its block ID. Suppose that we have a query
batch @ = {(q1,¢2)}, and results of ¢; and ¢, reside in data
blocks (13,14,15,17) and (14,16,17,18) respectively. Thus,
the coordinator needs to access blocks (0, 1, 4, 5, 6, 13, 14, 15,
17) to answer ¢; (highlighted in red), and blocks (0, 1, 2,5, 6,7,
14, 16, 17, 18) to answer ¢, (highlighted in blue). Assume that
the coordinator caches the second level of the R-tree index,
which contains the minimum bounding rectangle (MBRs) of
blocks in the third level of the index, as well as the set of all
block IDs from the subtree of node 1 and node 2 respectively.
She will know the results of ¢; reside in the MBRs of blocks (4,
5, 6) and those of ¢, reside in the MBRs of blocks (5, 6, 7).
Thus, the block sequence to be accessed should be @, = {(4, 5,
6,112, 13], [14, 15], [16, 171, 5, 6, 7, [14, 15], [16, 171, [18, 19])},
where [id,, id,,, ...] means that the coordinator may access
one or more blocks that reside in that set of blocks. In our
ORAM caching strategy, to find the furthest reference to a
given block in the current query batch, we look for either the
exact block ID or a set that covers that block ID. The rest of the
caching strategy remains the same as that in Section 4.4.

A similar procedure can be developed for kNN queries
by maintaining the priority queue using the MBRs for the
children nodes of the cached level.

4.6 Security Analysis
The security of the oblivious index structure (oblivious
B-tree and R-tree) and the query protocol as proposed in
Section 4.2 follows directly from the same security guaran-
tee and analysis as that in the design of oblivious data struc-
ture [32]. The security of the ORAM caching introduced in
Section 4.4 relies on the two critical facts. One is that the cli-
ents and the coordinator are trusted. The other is that the
communication between them is secured and not observed
by the cloud server. From the server’s point of view, he still
receives a sequence of requests to read one block at a time
and those blocks being read are written back to a randomly
chosen path from the Path-ORAM’s binary tree structure. In
other words, the Path-ORAM protocol is still followed while
accessing a sequence of seemingly random blocks.

For batch writing optimization together with partial path
retrieval optimization in Section 4.4.2, from the perspective
of the cloud, the coordinator still first retrieves A uniform

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

random paths and then writes these A paths back to the
cloud. The security guarantee and analysis are similar to
those for write-back operation in TaoStore [28]. TaoStore
also writes in batches of A paths, and leaks no additional
information to normal Path-ORAM, except for value of A
which only pertains to the implementation, not the actual
data or queries. Hence, it still satisfies Definition 1.

For security analysis in ORAM caching, the additional
sensitive information leaked is only that each ORAM
retrieval corresponds to a cache miss in trusted coordinator.
But since we do not consider timing attack (see “Security
model” part in Section 2.1), as most existing ORAM con-
structions, such leakage is not a major concern in our set-
ting. Introducing ORAM caching still follows Definition 1.

To be honest, there does exist some security issue regard-
ing query correlation. Suppose we build 5 levels of B-tree
index for a sequence of data blocks. If batch 1 makes exact 5
Path-ORAM accesses and batch 2 makes 5X more ORAM
accesses than a specific number, the adversary does learn
some query correlation information across batches.

Last, since volume leakage from range query may facili-
tate reconstruction attacks over encrypted databases [44],
we also introduce a padding mode, similar to that in Opa-
que [12] and ObliDB [33], to protect against such volume
leakage. A basic approach is to pad the total number of
Path-ORAM accesses for queries in each batch to the worst-
case number by issuing dummy block requests, which leaks
nothing with regard to the queries. Furthermore, some
novel padding techniques can be introduced, e.g., exploring
differential privacy rather than full obliviousness to reduce
the padding number [45], or padding the number of Path-
ORAM accesses in each batch to the closest power of a con-
stant = (e.g., 2 or 4) [46], [47], [48], leading to at most
log .| Rimax| distinct numbers, where |Ry,.«| is the worst-case
number of Path-ORAM accesses in each batch.

5 EXPERIMENTAL EVALUATION

5.1 Datasets and Setup

Basically, we evaluate our method (OQF+Optimization),
Baseline (Opaque) in Section 3, ORAM-+Index in Section 4.1,
and Oblivious Index in Section 4.2. Note that our method
uses either ORAM+Index or Oblivious Index. The costs of
the two instantiations under (OQF+Optimization) are simi-
lar while Oblivious Index needs less coordinator memory.

Shared Scan is an improved approach over Baseline
(Opaque). Shared Scan answers each batch of queries all
together by leveraging only one single scan operation. Dur-
ing query processing, it keeps the states of all queries in a
batch at the same time and shares the retrieved blocks from
the scan operation across the queries within that batch.

For one-dimensional range query, we also make an evalu-
ation of disk-based Oblivious AVL Tree. In our implementa-
tion, we put consecutive nodes in each level of the original
oblivious AVL tree into blocks and make each block still con-
tain B bytes. Our implementation reduces the number of
disk seeks, since retrieving one block can help us access
O(B) nodes, although the fanout of the tree is still two.

Lastly, we also compare our method with Raw Index.
Raw Index builds a B-tree/R-tree index over data blocks
and stores all index and data blocks to the cloud without

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

CHANG ETAL.

TABLE 2

Datasets
Dataset # of Points Raw Data Size
USA 23,947,347 681 MB
Twitter 247,032,130 7.1GB
OSM_40M 40,000,000 1.1GB
OSM_200M 200,000,000 5.6 GB
OSM_400M 400,000,000 12GB
OSM_800M 800,000,000 23 GB
OSM_1600M 1,600,000,000 46 GB

*OSM_XXM is a random sample of the full OSM dataset.

using any encryption or any ORAM protocol. During query
processing, the coordinator performs batch query process-
ing and caching with the same cache size as that in our
method. The caching strategy is LRU.

We compare these methods on three datasets in our
experiments. Statistics on the datasets are given in Table 2.

USA. USA is from the 9th DIMACS Implementation
Challenge (Shortest Paths), which contains points on road
networks in USA.

Twitter. Twitter dataset is sampled from the geo-locations
in tweets collected by us from October to December in 2017.

OSM. OSM (short for OpenStreetMap) is a collaborative
project to create a free editable map of the world. The full
OSM data contains 2,682,401,763 points in 78 GB.

SETUP. We use a Ubuntu 14.04 machine with Intel Core
i7 CPU (8 cores, 3.60 GHz) and 18 GB main memory as the
coordinator. The cloud server is a Ubuntu 14.04 machine
with Intel Xeon E5-2609 CPU (8 cores, 2.40 GHz), 256 GB
main memory and 2 TB hard disk. The bandwidth is 1 Gbps.

In our experiments, the cloud server hosts a MongoDB
instance as the outsourced storage. We also implement a
MongoDB connector class, which supports insertion, dele-
tion and update operations on blocks inside the MongoDB
engine. The cloud server supports read and write operations
from the coordinator through the basic operations on blocks.

All methods are implemented in C++. AES/CFB from
Crypto++ library is adopted as our encryption function in
all methods. The key length of AES encryption is 128 bits.

Default Parameter Values. The default values for key
parameters are as follows. We set the size of each encrypted
block to 4 KB (the same as [11], [19], [26]). We set the num-
ber of blocks in each bucket of Path-ORAM to 4 (the same as
[11], [23]). We set default cache reserved factor ¢ to 50,
which means the threshold of cache size T = c¢-log N (N is
the number of blocks in database). We set default query
batch size g (see Section 4.4.1) to 50. We set default batch-
write size A (see “Batch writing” part in Section 4.4.2) to 10.

Query Generation. We generate 2,000 queries for each
query type, where each query batch contains g queries. For
R-tree query, given the center point of each query batch, a
new query point is generated by adding a random offset
(no larger than a given batch locality parameter) over each
dimension of the center point. The default batch locality
parameter is 0.05 (for both longitude and latitude dimen-
sions). By default, the range size for each R-tree range
query is 0.05 x 0.05 (longitude dimension xlatitude dimen-
sion), and k = 10 for each R-tree kNN query. A similar pro-
cedure works for B-tree range query generation. The only

: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

5749

st Baseline (Opaque) === Oblivious AVL Tree
o |## Shared Scan mmm OQF+Optimization
10" W@ ORAM+Index B Raw Index

mEE - Oblivious Index

wan Baseline (Opaque) == Oblivious AVL Tree

o

""" Shared Scan
BN ORAM+Index
Bam Oblivious Index

== OQF+Optimization
e Raw Index

=)

S,
cd

S,

"

Cloud Storage Size (MB)
3

Coordinator Memory Size (MB)

< LUUHTTHTHHH T

=)

USA Twitter OSM_400M

Data Set
(b) Coordinator memory size.

USA Twitter OSM_400M
Data Set

(a) Cloud storage size.

Fig. 6. Cloud and coordinator storage costs.

difference is we set the default result size of each B-tree
range query to be 1,000.

Remarks. Ideally, if the coordinator accesses the same
number of blocks in the cloud for answering each query,
the communication cost between the cloud and the coor-
dinator should be roughly inversely proportional to the
query throughput for each method. It is confirmed by our
experimental results (see Figs. 8, 9, and 10 and Figs. 12,
13, 14, 15, and 16) to some extent. For simplicity, we
mainly focus on experimental results for query through-
put while brushing lightly over those for communication
cost in the following sections.

5.2 Cloud and Coordinator Storage Costs

Fig. 6a shows the cloud storage cost in default setting. Base-
line (Opaque) and Shared Scan achieve the same and mini-
mum cost, since they only store all encrypted data blocks to
the cloud. Raw Index needs a little more cost, since it also
builds an index over the data blocks. The other four meth-
ods have a similar storage overhead (roughly 10X larger
than Baseline (Opaque), Shared Scan and Raw Index), since
they all require Path-ORAM data structure on cloud.

Fig. 6b shows the coordinator storage cost. Baseline
(Opaque) has the minimum cost, since the coordinator only
keeps a constant number of blocks during scan-based opera-
tions. Shared Scan needs a little more cost, since it also
keeps the parameters and states of all queries in a batch dur-
ing query processing. Oblivious AVL Tree and Oblivious
Index achieve less cost than ORAM+Index, since they inte-
grate position map information into tree nodes to reduce
the coordinator memory size. Especially, Oblivious AVL
Tree needs a little more private memory than Oblivious
Index, since Oblivious AVL Tree has a larger tree height
and needs O(log N) (rather than O(log zN)) memory to store
a traversed tree path. Raw Index and our method have
larger private memory sizes (which are set to be the same)
than ORAM-+Index, since the coordinator keeps an addi-
tional ORAM cache with the threshold ¢ - log N.

5.3 Overall Initialization Time Cost
Initializing the original Path-ORAM [23] is very expensive,
since each real block insertion pays a Path-ORAM write
operation with O(log N) cost. To avoid the high initializa-
tion cost, we pre-build the ORAM data structure in trusted
storage and then upload it to the cloud using bulk loading.
In our bulk loading based initialization, the communica-
tion overhead and I/O cost of the whole data structure
dominate the overall initialization cost, which is roughly pro-
portional to cloud storage cost. Fig. 7 shows the overall ini-
tialization time cost of different methods. Baseline (Opaque)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

w5 Baseline (Opaque) === Oblivious AVL Tree ﬁm - Baseline (Opaque) -~ Oblivious AVL Tree
Shared Scan W OQF+Optimization | Shared Scan -@- 0QF+Optimization
WSS ORAM#index ~ ®88 Raw Index 8 | P ORAMndex - Rawlindex
mE Oblivious Index g10 —A— Oblivious Index
= = {‘/*/‘"/‘
| 5,
E gm0 Mn/ﬁ/m/‘
g s
£ £
o E 101
10 USA Twitter OSM_400M 0 10 20 30 40 5

Data Set
(a) Against different datasets.

Raw Data Size (GB)

(b) Against raw data size.

Fig. 7. Overall initialization time cost.

10 | s Baseline (Opaque) M8 Oblivious R-Tree
W OQF+Optimization
M Raw Index

10°{ @58 Baseline (Opaque) M8 Oblivious R-Tree
#ss% Shared Scan B OQF+Optimization

5 | == Shared Scan
10° { WM ORAM+R-Tree mm8 Raw Index

10" | mem ORAM+R-Tree

Query Throughput (gpm)
3,
Communication Cost (MB/Query)

USA Twitter
Data Set

(a) Query throughput.

OSM_400M USA Twitter
Data Set

(b) Communication cost.

OSM_400M

Fig. 8. Performance of R-tree range query.

’S 7
— wen Baseline (Opaque) ®8 Oblivious R-Tree 8 10 |ms Baseline (Opaque) W8 Oblivious R-Tree
E sss% Shared Scan W OQF+Optimization O | @ Shared Scan W OQF+Optimization
i=A WM ORAM+R-Tree 8 Raw Index 2 10" | e ORAM+R-Tree m Raw Index
2 3 B2
= =] /
g 8 g
3 c //r:'.
£ 2 7=
ki ﬁ.
z = 7
2 2 Z
<} E 7=
; : £ 7=
10 USA Twitter ‘OSM_400M c10 USA Twitter ‘OSM_400M

Data Set

(a) Query throughput.

Data Set
(b) Communication cost.

Fig. 9. Performance of R-tree kNN query.

and Shared Scan have the minimum cost, since they simply
store the encrypted data blocks to the cloud. Raw Index needs
a little more cost, since it also builds an index over the data
blocks. All other four methods have a similar cost (still
roughly 10X larger than Baseline (Opaque), Shared Scan and
Raw Index), due to building the Path-ORAM data structure.
When the raw data size increases from 1.1 to 46 GB, their ini-
tialization cost increases from 656 to 32,451 seconds.

5.4 Query Performance in Default Setting

Fig. 8a shows query throughput for R-tree range query in
default setting. The label on y-axis “qpm” is short for
“queries per minute”. Not surprisingly, Baseline (Opaque)
has the lowest query throughput, and Raw Index achieves
the largest one. Shared Scan achieves around 50X larger
query throughput than Baseline (Opaque). The reason is
that Shared Scan leverages only one single scan to answer
each batch of queries, while Baseline (Opaque) must scan
all the blocks once for each query in the batch. ORAM
+Index has roughly 2X larger query throughput than Obliv-
ious Index, since in ORAM-+Index the coordinator only per-
forms a get () operation through Path-ORAM protocol for
each block access, while in Oblivious Index she also per-
forms a put () operation for each block access (see Step 4 in
Fig. 3). In general, Shared Scan, ORAM+Index and Oblivi-
ous Index have comparable performances in terms of query
throughput. Our method achieves much larger query
throughput than those three methods (by almost one to two
orders of magnitude), due to the ORAM caching and other
optimizations that we have introduced. Fig. 8b shows the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

10 B
— | Baseline (Opaque) === Oblivious AVL Tree | 3 | usae Baseline (Opaque) === Oblivious AVL Tree
€ 10° {8 Shared Scan N OQF+Optimization | < s Shared Scan WEN OQF+Optimization
C | |Wm ORAM+B-Tree ma Raw Index 2 W ORAM+B-Tree @ Raw Index
3 10" |mmm Oblivious B-Tree z s Oblivious B-Tree
2 3 B
4
S 10 Q é
2 5 Lo
£ S i
F o10? g f‘:’
e g =
g 0 5 |
g 10 E g—
-2 o] Q= i
10 USA Twitter OSM_400M c 10 USA Twitter OSM_400M

Data Set

(a) Query throughput.

Data Set
(b) Communication cost.

Fig. 10. Performance of B-tree range query.

10°

)
8

—~ 4l Baseline (Opaque) —f— Oblivious R-Tree g 4l Baseline (Opaque) —f— Oblivious R-Tree
2 Shared Scan -@- OQF+Optimization o Shared Scan -@- OQF+Optimization
Emﬁ e ORAM+R-Tree —— Raw Index N 901 J ORAM+R-Tree —~ Raw Index
s g
) £ 60
o
S 2
@ 10 2 5
3 2
El 5
S :

2 o

07 10 40 50 0 10 40 50

20 30
Raw Data Size (GB)
(b) Coordinator memory size.

20 30
Raw Data Size (GB)
(a) Cloud storage size.

Fig. 11. Storage cost against raw data size.

communication cost for R-tree range query in default set-
ting. For each method, the communication cost is roughly
inversely proportional to the query throughput.

The performances of R-tree kNN query and B-tree range
query are shown in Figs. 9 and 10. The trends are similar to
those for R-tree range query in Fig. 8. Especially, for B-tree
range query (aka one-dimensional range query), Fig. 10
shows that Oblivious Index achieves 2X-4X larger query
throughput and less communication cost than Oblivious
AVL Tree, due to higher fanout and lower tree height.

5.5 Scalability
We focus on R-tree range query on OSM dataset to report
the experimental results regarding scalability.

Fig. 11a shows the cloud storage cost against raw data
size. Baseline (Opaque) and Shared Scan have the minimum
cost, since they simply store all encrypted data blocks to the
cloud. Raw Index needs a little more cost, since it also builds
an index over the data blocks. When raw data size increases
from 1.1 to 46 GB, all other three methods have a similar
storage cost, increasing from 16 to 512 GB. Fig. 11b shows
the coordinator memory size against raw data size. Baseline
(Opaque) still has the minimum cost. Shared Scan has a lit-
tle more cost, due to storing parameters and states of all
queries in each batch. Oblivious Index still has much less
cost than ORAM+Index, Raw Index and our method, which
increases with the data size logarithmically, not linearly. For
the other three methods, the cost grows (roughly) linearly
with the data size. The reason is that O(/N/B) blocks in the
position map dominate the coordinator storage when the
number of blocks is large. However, since position map
entries are small in size, our coordinator storage size only
increases from 8 to 73 MB, when raw data size increases
from 1.1 to 46 GB. It can be further mitigated if we instanti-
ate our method with oblivious index.

Fig. 12 shows query performance against raw data size.
Baseline (Opaque) has the lowest performance, while
Raw Index still achieves the best. Our method still
achieves 4X-405X larger query throughput and 5X-106X
less communication cost than Shared Scan, ORAM-+Index

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

CHANG ETAL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

10 B
— | Baseiine (Opague) - Oblvious R-Tree S 10°{ M- Baseline (Opaque) -~ Oblivious R-Tree
£ 10 Shared Scan -@- OQF-+Optimization g Shared Scan -@- OQF-+Optimization
& |-k ORAM+R-Tree —— Raw Index 2 1077 ORAM+R-Tree —— Raw Index
5 10 <
2, Hﬂ\‘\‘ z 10 ././I/H/.
2 10 o .,
3 € 10
£ 10 2
> g0
o 0 =1 =
g1 £10° H—-—Q’—Q’——‘

107 S 1ot

1
10 40 0 ©10°75 10 40 50

20 30
Raw Data Size (GB)

(b) Communication cost.

20 30
Raw Data Size (GB)

(a) Query throughput.

Fig. 12. Query performance against raw data size.

s | Jll- Baseline (Opaque) —f— Oblivious R-Tree
Shared Scan OQF+Optimization
10° | -~ ORAM+R-Tree Raw Index

O o | E | ———
10°t:t§‘§‘

10 .___././.
—a8—u—=a
2

0005 0.010 0050 0.100 0005 0.010 0050 0.100
Range Size (r X r) Range Size r (r X r)

10" { - Baseline (Opaque) - Oblivious R-Tree
Shared Scan OQF+Optimization
10°{ ~*- ORAM+R-Tree Raw Index

Query Throughput (;
. S,
Communication Cost (MB/Query)
3

(a) Query throughput. (b) Communication cost.

Fig. 13. Influence of query selectivity.

, | M Baseline (Opaue) < Oblivious R-Tree
10 Shared Scan OQF+Optimization
5 | *— ORAM+R-Tree Raw Index

40‘0\0__0\‘

10 A A 4 A A
\ = =%

" e o o o—°
’

m wow w [l
.

0.005 0.500 0.005

=)

M- Baseline (Opaque) —A— Oblivious R-Tree
Shared Scan OQF+Optimization
—K— ORAM+R-Tree Raw Index

—a—a—8—8a

3, o o

=)

Query Throughput (gpm)
L b % % % %% S

Communication Cost (MB/Query)

S, o

0.050 0.500
Batch Locality Range

(b) Communication cost.

0.050
Batch Locality Range

(a) Query throughput.

Fig. 14. Influence of query locality.

and Oblivious Index, when raw data size varies from 1.1
to 46 GB.

5.6 Selectivity, Locality, Batching, and Caching

We focus on R-tree range query on OSM_400M to report the
experimental results regarding selectivity, locality, query
batch size g and caching strategy. We also focus on R-tree
range query to report results regarding batch-write size .

Query Selectivity. Fig. 13 shows query performance
against query range size. Baseline (Opaque) has the lowest
but stable query performance due to scan-based operations.
Shared Scan also has a stable query performance, around
50X better than Baseline (Opaque). Raw Index still achieves
the best performance. When range size is small
(<£0.01 x 0.01), ORAM+Index and Oblivious Index achieve
better performance than Shared Scan, due to index search-
ing. When range size varies from 0.005 x 0.005 to 0.1 x 0.1,
our method achieves 18X-40X larger query throughput and
around 20X less communication cost than Shared Scan,
ORAM+Index and Oblivious Index.

Query Locality. Fig. 14 shows query performance against
batch locality parameter. Baseline (Opaque), Shared Scan,
ORAM-+Index, and Oblivious Index have a stable query per-
formance, since the coordinator does not perform ORAM cach-
ing and cannot take advantage of any locality information. For
our method and Raw Index, when the parameter increases,
query points in a batch will be distributed more sparsely,
which leads to less locality, < nbw > i.e. < /nbw >, less cache
hit rate and less query throughput. When the parameter varies
from 0.005 to 0.5, our method achieves 5X-243X larger query

5751

10" 2 10°
= - Baseline (Opaque) —f— Oblivious R-Tree I , 4l Baseline (Opaque) —f— Oblivious R-Tree
£ 10 Shared Scan OQF+Optimization | & 10 Shared Scan OQF+Optimization
A o —J— ORAM+R-Tree Raw Index g 5 | *— ORAM+R-Tree Raw Index
3 10 510
E6—4—4¢—¢4¢ : B— B B BEmE
2 10* S 10°
g S = — — —
E 10 {@———0—8—0—0 g 10'
: "k +—+ % - |e——e e —eoo
S 10“ 51071
<] [- . . . £ ‘ ‘ ‘ ‘ ‘

-2 o -3
L 5 10 50 10 ©10 3 5 10 50 100

Query Batch Size

(a) Query throughput.

Query Batch Size

(b) Communication cost.

Fig. 15. Influence of query batch size g.

om

_ Pt A= mmm A=5 mmm A=20 5
£) -2 . A=10 <]
1ot g
3 B =

3
%1 3 8
g1 2
£ 2
=2 " 8
Z10 =
3 E

10' 5 10
USA Twitter OSM_400M © USA Twitter OSM_400M

Data Set

(a) Query throughput.

Data Set
(b) Communication cost.

Fig. 16. Influence of batch-write size A.

throughput and 7X-106X less communication cost than Shared
Scan, ORAM-+Index and Oblivious Index.

Query Batching. Fig. 15 shows query performance against
query batch size g. Baseline (Opaque), ORAM+Index and
Oblivious Index have a stable query performance, since these
methods do not introduce any optimization in batch process-
ing. Shared Scan achieves roughly g times performance
improvement than Baseline (Opaque) when g increases. Raw
Index also has a stable query performance, since LRU cach-
ing strategy does not benefit from any information in future
block accesses, no matter how large g grows. For our method,
the performance improvement is very limited when g grows,
since the cache size is relatively large in our setting. Hence, a
basic LRU caching strategy has achieved very high cache hit
rate, and batch-FIF only obtains limited advantage from
future block accesses. Fig. 16 shows query performance
against batch-write size A in default setting. When) increases
from 1 to 20, our method achieves 23-35 percent larger query
throughput and 19-26 percent less communication cost, due
to batch writing and partial path retrieval optimizations.

ORAM Caching. Here, we compare the performance of
three ORAM caching strategies. Offline OPT is the offline
optimal caching strategy (< nbw > i.e. < /nbw >, FIF algo-
rithm in Section 4.4). ORAM Caching+Exact Block ID is our
online algorithm when given the exact block IDs to access in
a query batch (< nbw > i.e. < /nbw >, the online batch-FIF
algorithm in Section 4.4), which shows the ideal case of our
ORAM caching strategy. ORAM Caching+Block ID Map-
ping is the same online ORAM caching strategy but now
working with query to block ID mapping as described in
Section 4.5. In all three caching strategies, the coordinator
keeps an cache with the same threshold of cache size.

Fig. 17 shows query performance against query locality
with default cache size threshold. The three caching strate-
gies have comparable cache hit rate and query throughput in
our block access sequence. When locality parameter is below
0.1, the cache hit rate is above 96 percent and query through-
put is above 620 qpm for all caching strategies. Fig. 18 shows
query performance against cache size. Both cache hit rate
and query throughput have Offline OPT > ORAM Caching

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

~k-— Offiine OPT
—A— ORAM Caching+Exact Block ID
-@- ORAM Caching+Block ID Mapping

—k-— Offline OPT
—A— ORAM Caching+Exact Block ID
-@- ORAM Caching+Block ID Mapping >

Cache Hit Rate %
©
S
Query Throughput (qpm)
3

“~0.005 0.050 0.500 0.005 0.050 0.500
Batch Locality Range Batch Locality Range

(a) Cache hit rate. (b) Query throughput.
Fig. 17. ORAM caching strategy against query locality.

100 10
95
90
85

~%-— Offine OPT

—A- ORAM Caching+Exact Block ID
-@- ORAM Caching+Block ID Mapping

%k Offline OPT
—— ORAM Caching+Exact Block ID
-@- ORAM Caching+Block ID Mapping

Cache Hit Rate %

80

Query Throughput (qpm)
=

20 22 24 26 28 30 20 22 24 26 28 30
Coordinator Memory Size (MB) Coordinator Memory Size (MB)

(a) Cache hit rate. (b) Query throughput.

Fig. 18. ORAM caching strategy against cache size.

+Exact Block ID > ORAM Caching+Block ID Mapping.
When private memory size is below 22 MB, ORAM Caching
+Block ID Mapping only has 1.6X-1.8X less query throughput
than ORAM Caching+Exact Block ID, which demonstrates
the effectiveness of our query to block ID mapping strategy
under a small cache size. When private memory size is up to
24 MB, the cache hit rate is above 94 percent and query
throughput is above 190 qpm for ORAM Caching+Block ID
Mapping. Fig. 19a shows the communication cost against
cache size, which has Offline OPT < ORAM Caching+Exact
Block ID < ORAM Caching+Block ID Mapping. When pri-
vate memory size is up to 22 MB, the communication cost of
ORAM Caching+Block ID Mapping is below 3 MB/Query.

5.7 Query Latency

Lastly, Fig. 19b shows query latency for R-tree range query in
default setting. For Baseline (Opaque), ORAM+Index and
Oblivious Index, the query latency is roughly proportional to
communication cost, since they all process incoming queries
synchronously and sequentially. Shared Scan has roughly the
same query latency with Baseline (Opaque), since the query
results of each query in a batch are not fully generated until
the scan operation for that batch is completed. For our method
and Raw Index, the coordinator needs to re-order the queries
in a batch to improve query throughput, which in fact hurts
query latency to some extent. But our method still has compa-
rable query latency with ORAM+Index and Oblivious Index.

6 RELATED WORK

Generic ORAMs. ORAMs allow the client to access encrypted
data in a remote server while hiding her access patterns. For
detailed analysis on various ORAM constructions, please
refer to recent work [11]. However, most ORAM construc-
tions are not suitable for the multi-user scenario, since they
handle operation requests synchronously in a sequential fash-
ion. Hence, the system throughput is seriously limited.
Range ORAMs [46], [47] are well-designed ORAMs to
specifically support range queries. To minimize the number
of disk seeks, they take advantage of data locality informa-
tion and access ranges of sequentially logical blocks.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

10°] 5% Baseline (Opaque) M Oblivious R-Tree
s OQF+Optimization
mom Raw Index

—%- Offiine OPT

8 —A— ORAM Caching+ExactBlock ID | __ | === Shared Scan
-@- ORAM Caching+Block ID Mapping

Communication Cost (MB/Query)

OSM_400M

o = =
20 22 24 26 28 30 USA Twitter
Coordinator Memory Size (MB) Data Set

(a) (b)

Fig. 19. (a) Communication cost against cache size. (b) R-tree range
query latency.

However, range ORAMs need much larger cloud storage
cost, since they must deploy O(log N) separate sub-ORAMs.
They also bring much more bandwidth overhead and I/O
cost in bytes, although they achieve a less number of disk
seeks. Besides, they are only suitable for key-value stores
but do not work for relational tables with multiple columns.

There exist more advanced ORAM constructions, such as
PrivateFS [24], Shroud [25], ObliviStore [26], CURIOUS [27]
and TaoStore [28]. They focus on building oblivious file sys-
tems, supporting multiple clients, enabling parallelization,
supporting asynchronous operations and building distrib-
uted ORAM data stores. In other words, those constructions
above focus on achieving operation-level parallelism or asyn-
chronicity. In contrast, our OQF focuses on improving
query-level throughput where each query consists of multi-
ple operations in a sequence. Hence, those constructions are
orthogonal to our study. OQF can use such a construction
(e.g., TaoStore) as the secure ORAM storage on the cloud.

Recent studies also investigate how to support the
ORAM primitive more efficiently inside the architecture
design of new memory technologies (e.g., [49]). Our design
of OQF can benefit from these hardware implementations.

Oblivious Query Processing. Oblivious query processing
techniques for specific types of queries have also been
explored. Li et al. [29] study how to compute theta-joins
obliviously. Arasu et al. [13] design oblivious algorithms in
theory for a rich class of SQL queries, and Krastnikov et al.
[30] improve their oblivious binary equi-join algorithm. Xie
et al. [19] propose ORAM based solutions to perform short-
est path computation and achieve performance improve-
ment on private information retrieval (PIR) based solutions
[50], [51]. ZeroTrace [43] is a new library of oblivious mem-
ory primitives, combining ORAM techniques with SGX.
However, it only performs basic get/put/insert operations
over Set/Dictionary/List interfaces. Obladi [52] is the first
system to provide oblivious ACID transactions. The contri-
bution is orthogonal to our study.

To the best of our knowledge, Opaque [12] and ObliDB
[33] are the state-of-the-art studies concerning generic oblivi-
ous analytical processing. We have compared with Opaque
(without the distributed storage) and ObliDB (similar to
Oblivious Index baseline) in Section 5 and achieved an order
of magnitude speedup in query throughput. Lastly, as we
point out in “Remarks” part of Section 2.1, the coordinator in
OQF can be replaced with an enclave from SGX [39] on
cloud, which eliminates the need for a trusted coordinator.

Oblivious Data Structures. Prior studies [14], [32], [53] also
design oblivious data structures. Wang et al. [32] apply
pointer-based and locality-based techniques to some com-
monly-used data structures (e.g., binary search trees). In this

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

CHANG ETAL.: EFFICIENT OBLIVIOUS QUERY PROCESSING FOR RANGE AND KNN QUERIES

work, we extend their construction and propose oblivious
B-tree and oblivious R-tree. Hoang et al. [14] propose some
new oblivious data structures including Oblivious Tree Struc-
ture (OTREE). However, OTREE only works for binary tree
structures but cannot be extended for larger fanout (e.g., in
B-tree and R-tree). Oblix [36] builds an oblivious sorted multi-
map (OSM) based on oblivious AVL tree [32] and supports
queries over (key, sorted list of values) pairs. ObliDB [33]
exploits indexed storage method and builds oblivious B+ trees
to support point and range queries. In their implementation,
data is fixed to one record per block. But in our implementa-
tion of oblivious B-tree in Section 4.2, each block contains B
bytes, and the number of records that fit in each data block is
O(B) rather than one. Hence, our design is more suitable for
hard disk storage and reduces the number of disk seeks in
query processing,.

Private Index. Existing work [9], [54], [55], [56] also designs
specialized private index to support some specific types of
queries including secure nearest neighbor query and ANN
query. Hu et al. [57] devise secure protocols for point query on
B-tree and R-tree. However, their method works for two-party
model where the client owns the query and the cloud server
owns the data, which is different from our model.

A number of searchable indices [58], [59], [60], [61], [62],
[63] are also proposed to support range query over encrypted
data using searchable encryptions. However, those searchable
indices cannot protect query access patterns.

Secure Multi-Party Computation. Some recent work explores
building an ORAM for secure multi-party computation (MPC)
[64], [65]. MPC is a powerful cryptographic primitive that
allows multiple parties to perform rich data analytics over
their private data, while no party can learn the data from
another party. Hence, MPC-based solutions [64], [65], [66],
[67], [68] have a different problem setting from our cloud data-
base setting and we do not evaluate them in our study.

Differential Privacy. Differential privacy (DP) is an effec-
tive model to protect against unknown attacks with guaran-
teed probabilistic accuracy. Existing DP-based solutions
build key-value data collection [69], build index for range
query [70] or support general SQL queries [45], [71]. In brief,
DP-based solutions [45], [69], [70], [71], [72], [73], [74], [75],
[76] provide differential privacy for query results, while our set-
ting is to answer queries exactly.

7 CONCLUSION

This paper proposes an oblivious query framework (OQF).
We investigate different instantiations of an OQF and demon-
strate a design that is practical, efficient, and scalable. Our
design introduces ORAM caching and other optimizations
and integrates these optimizations with oblivious indices like
oblivious B-tree and oblivious R-tree. Extensive experimental
evaluation has demonstrated the superior efficiency and scal-
ability of the proposed design when being compared against
other alternatives and state-of-the-art baselines that exist in
the literature. Our investigation focuses on range and ANN
queries, however, the proposed framework is generic enough
and can be extended to handle other query types (e.g., joins),
which is an active ongoing work. The current design does not
address challenges associated with ad-hoc updates, which is
another future direction to explore.

5753

ACKNOWLEDGMENTS

Thanks for NSF CCF-1350888, ACI-1443046, CNS-1514520,
CNS-1564287, CNS-1718834, 11S-1816149, CDS&E-1953350,
and the support from Visa Research and Microsoft Research
PhD Fellowship. This work was mainly done when Z. Chang,
D. Xie, and F. Li were affiliated with the University of Utah.

REFERENCES

[11 A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and
R. Ramamurthy, “Transaction processing on confidential data using
Cipherbase,” in Proc. IEEE Int. Conf. Data Eng., 2015, pp. 435-446.

[2] A.Arasu et al., “Secure database-as-a-service with Cipherbase,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 1033-1036.

[3] R. A.Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query proc-
essing,” in Proc. ACM Symp. Operating Syst. Princ., 2011, pp. 85-100.

[4] S.Bajajand R. Sion, “TrustedDB: A trusted hardware-based data-
base with privacy and data confidentiality,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 3, pp. 752-765, Mar. 2014.

[5] Z. Heetal, “SDB: A secure query processing system with data inter-
operability,” Proc. VLDB Endowment, vol. 8, no. 12, pp. 1876-1879, 2015.

[6] S.Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” Proc. VLDB Endowment,
vol. 6, no. 5, pp. 289-300, 2013.

[7] ~A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy, “Querying
encrypted data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 1259-1261.

[8] H.Hacigtimiis, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database-service-provider model,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2002, pp. 216-227.

[91 B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in

Proc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 733-744.

W. K. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu, “Secure

query processing with data interoperability in a cloud database

environment,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,

2014, pp. 1395-1406.

Z. Chang, D. Xie, and F. Li, “Oblivious RAM: A dissection and

experimental evaluation,” Proc. VLDB Endowment, vol. 9, no. 12,

pp. 1113-1124, 2016.

W. Zheng, A. Dave, . G. Beekman, R. A. Popa, J. E. Gonzalez, and

I. Stoica, “Opaque: An oblivious and encrypted distributed analyt-

ics platform,” in Proc. USENIX Conf. Netw. Syst. Des. Implementa-

tion, 2017, pp. 283-298.

A. Arasu and R. Kaushik, “Oblivious query processing,” in Proc.

Int. Conf. Database Theory, 2014, pp. 26-37.

T. Hoang, C. D. Ozkaptan, G. A. Hackebeil, and A. A. Yavuz,

“Efficient oblivious data structures for database services on the

cloud,” IACR Cryptol. ePrint Arch., vol. 2017, pp. 1238, 2017. [Online].

Available: http:/ /eprint.iacr.org/2017 /1238

M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern dis-

closure on searchable encryption: Ramification, attack and miti-

gation,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012.

P. Kocher et al., “Spectre attacks: Exploiting speculative exe-

cution,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 1-19.

O. Goldreich, “Towards a theory of software protection and simu-

lation by oblivious RAMs,” in Proc. Annu. ACM Symp. Theory

Comput., 1987, pp. 182-194.

R. Ostrovsky, “Efficient computation on oblivious RAMs,” in Proc.

Annu. ACM Symp. Theory Comput., 1990, pp. 514-523.

D. Xie et al., “Practical private shortest path computation based on obliv-

ious storage,” in Proc. IEEE 32nd Int. Conf. Data Eng., 2016, pp. 361-372.

O. Goldreich and R. Ostrovsky, “Software protection and simula-

tion on oblivious RAMs,” . ACM, vol. 43, no. 3, pp. 431-473, 1996.

E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious

RAM,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012.

E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM

with O((log N)*) worst-case cost,” in Proc. Int. Conf. Theory Appl.

Cryptol. Inf. Secur., 2011, pp. 197-214.

E. Stefanov et al., “Path ORAM: An extremely simple oblivious

RAM protocol,” in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., 2013, pp. 299-310.

P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A parallel obliv-

ious file system,” in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., 2012, pp. 977-988.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

http://eprint.iacr.org/2017/1238

5754

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 12, DECEMBER 2022

J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman,
“Shroud: Ensuring private access to large-scale data in the data cen-
ter,” in Proc. USENIX Conf. File Storage Technol., 2013, pp. 199-214.
E. Stefanov and E. Shi, “ObliviStore: High performance oblivious
cloud storage,” in Proc. IEEE Symp. Secur. Privacy, 2013, pp. 253-267.
V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: The gap, the fallacy,
and the new way forward,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2015, pp. 837-849.

C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro,
“TaoStore: Overcoming asynchronicity in oblivious data storage,”
in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 198-217.

Y. Li and M. Chen, “Privacy preserving joins,” in Proc. IEEE 24th
Int. Conf. Data Eng., 2008, pp. 1352-1354.

S. Krastnikov, F. Kerschbaum, and D. Stebila, “Efficient oblivious
database joins,” Proc. VLDB Endowment, vol. 13, no. 11, pp. 2132—
2145, 2020.

K. Mouratidis and M. L. Yiu, “Shortest path computation with no
information leakage,” Proc. VLDB Endowment, vol. 5, no. 8,
pp. 692-703, 2012.

X. S. Wang et al., “Oblivious data structures,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2014, pp. 215-226.

S. Eskandarian and M. Zaharia, “ObliDB: Oblivious query proc-
essing for secure databases,” Proc. VLDB Endowment, vol. 13,
no. 2, pp. 169-183, 2019.

B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in Proc.
Annu. Cryptol. Conf., 2010, pp. 502-519.

C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious RAM timing channel while making
information leakage and program efficiency trade-offs,” in Proc.
IEEE 20th Int. Symp. High Perform. Comput. Archit., 2014, pp. 213-224.
P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix:
An efficient oblivious search index,” in Proc. IEEE Symp. Secur.
Privacy, 2018, pp. 279-296.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privi-
leged side-channel attacks in shielded execution with Déja Vu,” in
Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 7-18.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa, “Strong and efficient cache side-channel protection
using hardware transactional memory,” in Proc. USENIX Conf.
Secur. Symp., 2017, pp. 217-233.

T. Kim, Z. Lin, and C. Tsai, “CCS’17 Tutorial Abstract: SGX secu-
rity and privacy,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 2613-2614.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

L. Ren et al., “Constants count: Practical improvements to oblivi-
ous RAM,” in Proc. USENIX Conf. Secur. Symp., 2015, pp. 415-430.
M. Maas et al., “PHANTOM: Practical oblivious computation in a
secure processor,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 311-324.

S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious
memory primitives from Intel SGX,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2018.

P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson, “Pump
up the volume: Practical database reconstruction from volume
leakage on range queries,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 315-331.

J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
“Shrinkwrap: Efficient SQL query processing in differentially
private data federations,” Proc. VLDB Endowment, vol. 12, no. 3,
pp. 307-320, 2018.

A. Chakraborti, A. J. Aviv, S. G. Choi, T. Mayberry, D. S. Roche,
and R. Sion, “rORAM: Efficient range ORAM with O(log’N)
locality,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2019.

G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi,
“Locality-preserving oblivious RAM,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptogr. Techn., 2019, pp. 214-243.

L. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre,
“SEAL: Attack mitigation for encrypted databases via adjustable
leakage,” in Proc. USENIX Secur. Symp., 2020, pp. 2433-2450.

A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, “Secure
DIMM: Moving ORAM primitives closer to memory,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit., 2018, pp. 428-440.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” J. ACM, vol. 45, no. 6, pp. 965-981, 1998.

P. Williams and R. Sion, “Usable PIR,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2008.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and
L. Alvisi, “Obladi: Oblivious serializable transactions in the
cloud,” in Proc. 13th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2018, pp. 727-743.

M. Keller and P. Scholl, “Efficient, oblivious data structures for
MPC,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2014,
pp. 506-525.

S. Papadopoulos, S. Bakiras, and D. Papadias, “Nearest neighbor
search with strong location privacy,” Proc. VLDB Endowment,
vol. 3, no. 1, pp. 619-629, 2010.

X.Yi, R. Paulet, E. Bertino, and V. Varadharajan, “Practical & near-
est neighbor queries with location privacy,” in Proc. IEEE 30th Int.
Conf. Data Eng., 2014, pp. 640-651.

Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environ-
ments,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 664—675.
H. Hu, J. Xu, X. Xu, K. Pei, B. Choi, and S. Zhou, “Private search
on key-value stores with hierarchical indexes,” in Proc. IEEE 30th
Int. Conf. Data Eng., 2014, pp. 628-639.

R.Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query
processing with strong privacy protection for cloud computing,”
Proc. VLDB Endowment, vol. 7, no. 14, pp. 1953-1964, 2014.

R.Liand A. X. Liu, “Adaptively secure conjunctive query process-
ing over encrypted data for cloud computing,” in Proc. IEEE 33rd
Int. Conf. Data Eng., 2017, pp. 697-708.

I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. N. Garofalakis, “Practical private range search revisited,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 185-198.
P. Karras, A. Nikitin, M. Saad, R. Bhatt, D. Antyukhov, and S.
Idreos, “Adaptive indexing over encrypted numeric data,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 171-183.

C. Horst, R. Kikuchi, and K. Xagawa, “Cryptanalysis of compara-
ble encryption in SIGMOD’16,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2017, pp. 1069-1084.

I. Demertzis and C. Papamanthou, “Fast searchable encryption
with tunable locality,” in Proc. ACM Int. Conf. Manage. Data, 2017,
pp- 1053-1067.

X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi,
“SCORAM: Oblivious RAM for secure computation,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2014, pp. 191-202.

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
programming framework for secure computation,” in Proc. IEEE
Symp. Secur. Privacy, 2015, pp. 359-376.

J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers,
“SMCQL: Secure query processing for private data networks,”
Proc. VLDB Endowment, vol. 10, no. 6, pp. 673-684, 2017.

N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets,
and A. Bestavros, “Conclave: Secure multi-party computation on
big data,” in Proc. Eur. Conf. Comput. Syst., 2019, pp. 3:1-3:18.

A. Dave, C. Leung, R. A. Popa, J. E. Gonzalez, and I. Stoica,
“Oblivious coopetitive analytics using hardware enclaves,” in
Proc. Eur. Conf. Comput. Syst., 2020, pp. 39:1-39:17.

Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data
collection with local differential privacy,” in Proc. IEEE Symp.
Secur. Privacy, 2019, pp. 317-331.

C. Sahin, T. Allard, R. Akbarinia, A. E. Abbadi, and E. Pacitti, “A
differentially private index for range query processing in clouds,”
in Proc. IEEE 34th Int. Conf. Data Eng., 2018, pp. 857-868.

N. M. Johnson, J. P. Near, and D. Song, “Towards practical differ-
ential privacy for SQL queries,” Proc. VLDB Endowment, vol. 11,
no. 5, pp. 526-539, 2018.

R. Chen, H. Li, A. K. Qin, S. P. Kasiviswanathan, and H. Jin,
“Private spatial data aggregation in the local setting,” in Proc.
IEEE 32nd Int. Conf. Data Eng., 2016, pp. 289-300.

T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in Proc. USENIX Conf. Secur.
Symp., 2017, pp. 729-745.

G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang,
“Privacy at scale: Local differential privacy in practice,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 1655-1658.

N. Wang et al., “Collecting and analyzing multidimensional data
with local differential privacy,” in Proc. IEEE 35th Int. Conf. Data
Eng., 2019, pp. 638-649.

T. Wang et al., “Answering multi-dimensional analytical queries
under local differential privacy,” in Proc. Int. Conf. Manage. Data,
2019, pp. 159-176.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on November 08,2022 at 01:00:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
SUPPLEMENTAL MATERIAL
A. Proof of Theorem 2.

X [4121] [5344] [123]
Phase 1 Phase 2 Phase 3

| Phasel i Phase 2 iPhase 3§
Processing 3[412 m[534 ﬂi[IZ?’]i

in Batch: | : ‘
iBatch 1 Batch 2 Batch 3

Fig. 21. An example of proving Lemma 1.

Lemma 1. The competitive ratio p(batch-FIF) < T.

Proof. The proof is an extension of that for the basic caching
problem . An example is shown in Figure 21.

First, we divide the block request sequence ¥ into phas-
es.

1) Phase 1 begins at the first block of X.

2) Phase h (h > 2) begins at the first time we see the Tth
distinct block after Phase (h — 1) has begun.

Suppose the cache size 7 = 3 and the block request
sequence ¥ = (4, 1,2,1,5,3,4,4,1, 2, 3). We divide &
into three phases. For example, Phase 2 begins at block 5,
since block 5 is the third distinct block after Phase 1 began
(block 1 and block 2 are the first and second distinct blocks,
respectively).

Next, we show that the optimal offline algorithm makes
at least one cache miss each time a new phase begins. Denote
the jth distinct block ID in Phase h by id;-b. Consider block
IDs idg7 cee id’T1 and block ID id}fH. These are 7 distinct
block IDs by the definition of a phase. Then if none of the
blocks idg7 RN id}T’ incur a cache miss, block id’f+1 must
incur one, since blocks idg7 cee id}T’ and id?"H are 7 distinct
blocks, block id}f is in the cache, and only 7 blocks can reside
in the cache.

Let P be the number of phases. Then the optimal offline
algorithm makes at least (P — 1) misses in total. On the
other hand, a basic LRU strategy makes at most 7 misses
per phase. As both costs are proportional to the number of
blocks retrieved from the cloud, let § be the ratio (a constant)
of the cost to the number of retrieved blocks. Then we have
cost(FIF,X) > (P — 1)¢ and cost(LRU, X) < 7P4. It is easy
to see that our batch-FIF algorithm performs at least no worse
than LRU. Thus, cost(batch-FIF,) < cost(LRU,) < 7P4.
Therefore, the competitive ratio
p(batch-FIF) < 7. O

Proof of Theorem 2.

Proof. According to Lemma 1, we only needs to establish
case A). To facilitate our proof, an example is shown in
Figure 22. For each state, the first line shows the cache in
our batch-FIF algorithm (denoted by online cache), while the
second line shows that in the offline FIF algorithm (denoted
by offline cache). Suppose that State 1 is the beginning state of
the ith (2 < ¢ < s) batch (also the ending state of the (i —1)st

2.Shuchi Chawla. 2007. http://pages.cs.wisc.edu/~shuchi/
courses/787-F07 /scribe-notes /lecture20.pdf. In UW-Madison CS787:
Advanced Algorithms.

T=Ti .t Tig
mi, = o;+ ity

State 1: 1@; |
Online:
Offline:

State 2:
Online:
Offline:

|1

%

%

State2:1 M, | | lt‘ ;

Online: NS

Offline: NS I ——

State3:! | ! | 1 !

Online: m ' 1 4 ‘ m=r
Offline: NS

Stated: | 1 | 4 i

Online: !Eﬁiil R 4 ‘5}‘ T<m;< T+m,"h
Offline: | IZNSH

swes., | L] |

Online: [EI‘I‘ | 3] S —
Offline: |20 ’
swes |) e

Online: [~ . ["m;> T+my,
Offline: || T ’

Fig. 22. An example of caching analysis.

batch). The total size of the cache is 7. Assume that initially
at State 1 the number of common blocks from online and
offline caches (highlighted in red) is 7; . and the number of
remaining blocks (e.g., those highlighted in black in online
cache) is 7; 4.

The blocks in the ith query batch (with size m;) consists
of two types: those that reside in offline cache (denoted
by hits), and those that are not found in offline cache
(denoted by misses). We can show that the worst case for
the competitive ratio analysis happens when each hit appears
earlier than any of misses in the ith batch. For any hit, there are
only three possible cases:

1) those hits happen among the common blocks held by
both offline and online caches at the beginning of processing
the ¢th batch (red regions in State 1), ¢.e., Segment 1 in State
2 in Figure 22.

2) those hits happen among the blocks held only by
the offline cache at the beginning of the ¢th batch (i.e.,
outside the red region in State 1), and resulting in a buffer
replacement for the online cache from its black region in
State 1 (blocks held by online cache but not offline cache at
State 1), i.e., Segment 2 in State 2 in Figure 22.

3) those hits happen among the blocks held only by
the offline cache at the beginning of the ith batch (i.e.,
outside the red region in State 1), and resulting in a buffer
replacement for the online cache from its red region in State
1, i.e., Segment 3 in State 2 in Figure 22.

Assume that the size of Segments 1, 2, and 3 for hits in
the ith batch is o, 5;, and v;, respectively, and the number
of hits is m; , = a; + B; + V.

State 2 represents the state of online and offline caches
after processing all hits. For ease of understanding, we sort
all blocks in a cache by their access time in descending order

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

at the end of each state, which means that all blocks from
hits will be arranged consecutively at the head of the cache,
as shown for the updated State 2 in Figure 22.

Next, the coordinator starts processing blocks from the
set of misses. We can show that the worst case for compet-
itive ratio analysis happens when any block from the set of
misses does not reside in online cache and there are no duplicate
blocks. Under this case, we can construct a request sequence
that leads to the smallest possible number of common blocks
left in online and offline caches at the end of processing the
ith batch.

A key observation is that for any of such blocks, since
they are guaranteed to be misses for the online cache within
this batch, they belong to class b for our online caching
strategy for which the LRU buffer replacement policy is to
be applied. Consider State 3 in Figure 22 for the case when
m; = 7. All such requests will lead to cache misses to the
online cache and end up replacing all blocks from Segment
4 (note that since LRU is used, Segments 1, 2, and 3 will stay
since they were just accessed), and Segment 5 represents
a single block residing at the end of the cache that is last
accessed and also leads to the last replacement.

Similarly, States 4, 5, and 6 show the case for the online
cache under the condition that 7 < m; < 74+ m;, m; =
T 4+ my,n, and m; > 7 + m, j, respectively.

For the offline cache using the FIF algorithm, the worst
case for online caching, under all aforementioned block se-
quence lengths, happens when the offline cache repeatedly
replaces the last block from common blocks held by online
and offline caches (i.e., last block in Segment 3) for the same
sequence of requests. This will lead to the smallest possible
number of common blocks for online and offline caches at
the end of the ith batch.

Since the condition in case A) is that 7 < m < m;, by
the end of the ith batch, there will exist and only exist one
block that is accessed while processing blocks from the set
of misses and resides in both of offline and online caches,
which is the last accessed block in the ¢th batch, highlighted
by the gray block in States 3-6 for various cases of block
sequence length in Figure 22.

Therefore, we have the following results for the ith (2 <
1 < s) batch as shown in Figure 22.

Fact 1: By the end of the ith batch (which is also the
beginning of the (7 4 1)st batch), we have

T4 (Mmin —my ifr <m; <71+my
Title 2 (i,h z) . >) i,h (1)
’ 1 ifm; > 7 +my .
For both cases, we have
Tit1,e > T+ (Mip —my) © 7 < Tig1,c+ (Mg —mip). (2)

Fact 2: We denote the cost of FIF algorithm and our
batch-FIF algorithm in ith batch by cost; (FIF) and cost; (bat-
ch-FIF) respectively. As both costs are proportional to the
number of blocks retrieved from the cloud server using the
ORAM protocol, let § be the ratio (a constant) of the cost to
the number of retrieved blocks. We have

cost; (FIF) = (m; —m;)0
cost; (batch-FIF) = (m; — «;)0.

As shown in Figure 22, we must have

®)

0<(m;n—oa;) (Segments2and 3) < 7, g =7 — T . (4)

Inequality (4) implies that
o 2> My +Tie—T.)
Based on Equation (3) and Inequality (5), we have

cost; (FIF) = (m; —m;)0

6
cost, (batch-FIF) < (m; — m; , + T — Ty.c)0. ©)

Based on Inequality (2) and Inequality (6), we have

cost; (FIF) = (m; —my p)0
cost; (batch-FIF) < (2(m; — myp) + (Tit1,c — Tie))O.

Finally, we denote the total cost of FIF algorithm and
our batch-FIF algorithm in all s batches by cost(FIF) and
costyot (batch-FIF) respectively. Therefore,

S
costio (FIF) = (ma + 3" (mi —min))d
costyor (batch-FIF)

< (m1 + Zi:Z (2(m; —mip) + (Tig1,e — Ti,c))) 0
= (ml + (Tst1,c — To,c) +2 22:2 (m; — ml-,h))]
S
< (m1 + 7+ 221,:2 (m; — mi,h)) 0 (Tog1,<T)
< (2m1 + QZiZQ (m; — mi,h)) 0 (T<m<m)
= 2 costyot(FIF). O
B. Proof of Theorem 3.

Proof. Given any two leaf node indices z and z’ (0 <
r < 2’ < 2F — 1), we can represent them using (L+1)-
bit binary encoding. Suppose that © = (bob1...br)2 and
' = (byb] ...b})2. Let P(x,¢) and P(2',¢) denote the
buckets in level ¢ (0 < ¢ < L) of path P(z) and path
P(z') in Path-ORAM'’s binary tree respectively. We must
have P(z,¢) = P(2’,¢) if and only if Vi € [0,¢], b; = b].

Now assume that the coordinator currently has retrieved
data blocks from A (0 < X <) paths. Suppose H =
{x1,79,...,2x}, where Vi € {1,2,--- N}, 0 < x; <20 —
1; and the coordinator needs to retrieve a new path P(z)
(r ¢ Hand 0 < 2 < 2F — 1) from the cloud.

(1) Let Ling = {z; | z; € HAz; < a}. If Ling # @, left(x)
is the maximum index number in Lig. For any x; € Ling,
we must have P(z;) N P(x) C P(left(z)) N P(x).

(2) Let Ryng = {.’Ej | T; € H A T; > (L’} If Ring 75 g,
right(x) is the minimum index number in Ring. For any z; €
Ring, we must have P(z;) N P(x) C P(right(z)) N P(z).

Based on (1) and (2), we can conclude that (P(z1) U
P(za)U---UP(zx))NP(z) C (P(left(x)) U P(right(x))) N
P(x). O

C. Extension of Theorem 2.

Lemma 2. If there are duplicate block IDs within any batch, the
competitive ratio p(batch-FIF) = T.

Proof. When m = m; = --- = m, = 1, our caching problem
will be reduced to the basic caching problem and our batch-
FIF caching strategy will be equivalent to the basic LRU
strategy, where the competitive ratio p(batch-FIF) = 7.
Consider the extreme case. For each batch, if all the data
block IDs in the batch are the same, it will be reduced to the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

case of m = my = --- = ms = 1, where p(batch-FIF) = 7.
This example gives the lower bound p(batch-FIF) > 7.
Since Lemma 1 gives a general upper bound
p(batch-FIF) < 7, we can conclude that if there are duplicate
block IDs within any batch, we will have p(batch-FIF) =
T. O

Theorem 4. (Extension of Theorem 2) If there are duplicate block
IDs within any batch, p(batch-FIF) = 7 (1 is the buffer size);
otherwise,
A) If T < m, the competitive ratio p(batch-FIF) < 2;
1) If 7 = 1, p(batch-FIF) = 1;
2)If T > 2and m > 27, p(batch-FIF) = (m —1)/(m —
T)<2-1/7;
3Ifr>2and 7 < m < 27 — 1, p(batch-FIF) = 2.
B) Otherwise, the competitive ratio p(batch-FIF) < 7.

Proof. First, the case where there are duplicate block IDs
within any batch is covered by Lemma 2. Second, the
general case A) is covered by Theorem 2. Third, case B) is
covered by Lemma 1. Therefore, we only needs to establish
cases A.1), A.2) and A.3).

Case A.1). When 7 = 1, any algorithm should have the same
caching strategy. Obviously, p(batch-FIF) = 1.

Case A.2). 1° First, we prove the upper bound.

Since the buffer size is 7, we must have the number of
hits in offline cache for the ith batch m; ;, < 7 (2 <17 < s).

Case O:m;p=7 (2<i<5s)

In Inequality (1), we have known 7, > 1 (2 < ¢ < s).
Since m;;, = 7 (2 < i < s) in this case, we must have the
number of hits in online cache for the ith batch a; > 7; . > 1
(2 <1 < 8). Thus, we have

cost;(FIF) = m; —m;p =m; — 7

2<71<38).
cost; (batch-FIF) = m; —a; <m; — 1 2<i<s)
Therefore,
cost; (batch-FIF) < 1 (1=1) @)
cost;(FIF) ~— |(m—1)/(m—7) (2<i<s).

Case @Q:m;p <7—1 (2<i<ys)
Basically, we have «; > 0. Thus, we have

cost;(FIF) = m; —m;p > m; — 7+ 1

2<171<38).
cost; (batch-FIF) = m; — a; < m; (2<i<s)
Therefore,
cost; (batch-FIF) < 1 (i=1) ®)
cost;(FIF) = |m/(m —7+1) (2<i<ys).

Based on Case (D) (see Inequality (7)) and Case @ (see
Inequality (8)), we will have

cost; (batch-FIF) o m= 1
cost; (FIF)

Therefore, we have

1< <s).
T m-—-T (_1_8)

costyor (batch-FIF)
costior (FIF)

When m > 27, we have

m—1

p(batch-FIF) = < .
m-—T

m—1 _2r—1
<

p(batch-FIF) <

=

m-—7°~ 2T —T

X: 123456 126789 129101112
Batch 1 Batch 2 ‘ Batch 3
7=3 m=6 | Online Cache | Offline Cache |
After Batch 1: 3 456 § 126 §
After Batch 2: | 789 i 129 !
After Batch3: | 101112 | 1212 |
of Misses: 3 6+5+5 3 6+3+3 1
Fig. 23. An example of case A.2).
X 21 34 12 43 21 34
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batqh 6
=2 m=2 | Online Cache | Offline Cache !
After Batch 1: i 21 i 21 i
After Batch 2: | 34 | 41 3
After Batch 3: | 12 | 42 i
After Batch 4: | 43 | 32 i
After Batch 5: | 21 i 31 i
After Batch 6: ! 34 | 41 3

of Misses: 52+2+2+2+2+2§2+2+1+1+1+1

Fig. 24. An example of case A.3) .

2° Next, we prove the lower bound by giving an example
(see Figure 23).

Suppose that the ith (1 < ¢ < s) batch contains m; = m
data block IDs (1, 2, - -+, 7 — 1, end;_1, new; 1, new; o, - - -,
new; m,,—r—1, end;), where all the end;’s (0 < j < s) and all
the new; ¢'s (1 < f < m—7—1) are distinct from each other
and do not reside in [1,7 — 1].

For FIF algorithm, after processing the ith (1 < i < s)
batch, it saves (1, 2, ---, 7 — 1, end;) in offline cache. Thus,
in the (z + 1)st (2 < i+ 1 < s) batch, it will have 7 cache hits
and have (m — 7) cache misses.

For our batch-FIF algorithm, after processing the ¢th (1 <
1 < s) batch, it saves (NeW; m—2741, -+, NEW; yp—r—1, €nd;)
in online cache. Thus, in the (i + 1)st (2 < ¢+ 1 < s) batch, it
will have 1 cache hit (end;) and have (m — 1) cache misses.

Thus, we have

(i=1)
cost; (FIF) (m—1)/(m—1) (2<i<ys).
Therefore, when s is large enough, we have p(batch-FIF)
> costiot(batch-FIF) / costior (FIF) = (m — 1)/(m — 7). Espe-
cially, when m = 27, we have p(batch-FIF) > costi(batch-
FIF)/ costiot(FIF) = (27 — 1)(27 —7) =2 — 1 /7.
3° Based on 1° and 2°, the conclusion in A.2) is proven.

cost; (batch-FIF) {m/ m=1

Case A.3). 1° The upper bound is given in Theorem 2.

2° Here, we prove the lower bound by giving examples.

Case @:7=2and m =2

An example is shown in Figure 24. Suppose that the (4i+
1)st (1 < 4i + 1 < s) batch contains my4;11 = m = 2 data
block IDs (2, 1), the (4i + 2)nd (2 < 4i + 2 < s) batch
contains my;+2 = m = 2 data block IDs (3, 4), the (4i + 3)rd
(3 < 4i 4 3 < s) batch contains my; 13 = m = 2 data block

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

X 123 134 145
Belltch 1 Batch 2 Blatch 3 .
=2 m=3 | Online Cache | Offline Cache |
After Batch 1: i 32 i 13 i
After Batch 2: | 34 ! 14 i
After Batch 3: | 54 ! 15 !
of Misses: i 3+2+42 i 3+1+1 i

Fig. 25. An example of case A.3) @.

IDs (1, 2), and the (4i + 4)th (4 < 4i + 4 < s) batch contains
my;+4 = m = 2 data block IDs (4, 3).

For FIF algorithm, after the 1st batch, it saves (1, 2) in
offline cache. In the 2nd batch, it will have 0 hit and 2 misses.
After the (4i + 2)nd (2 < 4i + 2 < s) batch, it saves (1, 4)
in offline cache. In the (4¢ + 3)rd (3 < 4¢ + 3 < s) batch, it
will have 1 hit and 1 miss. After the (4i+3)rd (3 < 4i+3 <
s) batch, it saves (2, 4) in offline cache. In the (4i + 4)th
(4 < 4i 4+ 4 < s) batch, it will have 1 hit and 1 miss. After
the (4i + 4)th (4 < 4i + 4 < s) batch, it saves (2, 3) in
offline cache. In the (4(¢ +1) + 1)st (65 < 4(: +1)+1 < s)
batch, it will have 1 hit and 1 miss. After the (4(i + 1) + 1)st
(5 <4(i+ 1)+ 1 < s) batch, it saves (1, 3) in offline cache.
In the (4(i + 1) + 2)nd (6 < 4(: + 1) + 2 < s) batch, it will
have 1 hit and 1 miss.

For our batch-FIF algorithm, after the (47 + 1)st (1 <
4i + 1 < s) batch, it saves (2, 1) in online cache. In the
(42 + 2)nd (2 < 4i + 2 < s) batch, it will have 0 hit and 2
misses. After the (4i 4+ 2)nd (2 < 4i + 2 < s) batch, it saves
(3, 4) in online cache. In the (4¢ + 3)rd 3 < 4i1 +3 < s)
batch, it will have 0 hit and 2 misses. After the (47 + 3)rd
(3 < 4i + 3 < s) batch, it saves (1, 2) in online cache. In the
(41 + 4)th (4 < 4i + 4 < s) batch, it will have 0 hit and 2
misses. After the (4i+4)th (4 < 4i+4 < s) batch, it saves (4,
3) in online cache. In the (4(i+1)+1)st (5 < 4(i+1)+1 < s)
batch, it will have 0 hit and 2 misses.

Thus, we have

(1<i<?2
B3<i<ys).

~—

cost;(batch-FIF) [2/2 =1
cost,; (FIF) 2/1=2

Therefore, when s is large enough, we have p(batch-FIF)
> costyot (batch-FIF) / costyor (FIF) = 2.

Case @:7=2and m =3

An example is shown in Figure 25. Suppose that the ith
(1 £ 7 < s) batch contains m; = m = 3 data block IDs (1,
end;_1, end;), where all the end;’s (0 < j < s) are distinct
from each other and not equal to 1.

For FIF algorithm, after the ith (1 < ¢ < s) batch, it saves
(1, end;) in offline cache. In the (i+1)st (2 < i+ 1 < s) batch,
it will have 2 hits and 1 miss.

For our batch-FIF algorithm, after the ith (1 < i < s)
batch, it saves (end;_1, end;) in online cache. In the (¢ 4 1)st
(2 <141 < s) batch, it will have 1 hit (end;) and 2 misses.

Thus, we have

(i=1)

(2<i<s).

cost;(batch-FIF) |3/3 =1
cost; (FIF) 2/1=2

X 123 324 124 423 123
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

=3 m=3 Online Cache | Offline Cache
After Batch1: | 123 | 123
After Batch 2: i 423 i 124 %
After Batch 3: | 421 ! 124 i
After Batch 4: | 423 i 123 3
After Batch 5: | 123 3 123 !

#of Misses: | 3+1+1+1+1 | 3+1+0+1+0 |

Fig. 26. An example of case A.3) O .

Therefore, when s is large enough, we have p(batch-FIF)
> costor(batch-FIF) / costyo (FIF) = 2.

Case @:7>3andm=r

An example is shown in Figure 26. Suppose that the (4i+
1)st (1 < 4i + 1 < s) batch contains my;+1 = m = 7 data
blockIDs (1,2,3,---,7—1,7), the (4i+2)nd (2 < 4i+2 < s)
batch contains my;+2 = m = 7 data block IDs (7, 2, 3, - - -,
7—1,7+4 1), the (4i 4+ 3)rd (3 < 4i + 3 < s) batch contains
myi+3 = m = 7 datablockIDs (1,2,3,---,7—1,74+1) and
the (4i4+4)th (4 < 4i+4 < s) batch contains mg;14 =m =17
data block IDs (7 +1,2,3,---,7—1, 7).

For FIF algorithm, after the (49 + 1)st (1 < 4i+1 <)
batch, it saves (1, 2, 3, ---, 7 — 1, 7) in offline cache. In the
(4i+2)nd (2 < 4i+2 < s) batch, it will have (7 —1) hits and
1 miss. After the (4i + 2)nd (2 < 47 + 2 <) batch, it saves
1,2,3,---,7—1, 7+ 1) in offline cache. In the (47 + 3)rd
(3 < 4i + 3 < s) batch, it will have 7 hits and 0 miss. After
the (4i + 3)rd (3 < 4i + 3 < s) batch, it saves (1,2, 3, - - -,
7—1,74+1) in offline cache. In the (4i +4)th (4 < 4i+4 < s)
batch, it will have (7 —1) hits and 1 miss. After the (4i+4)th
(4 < 4i+4 < s)batch, itsaves (1,2,3,---, 7—1, 7) in offline
cache. In the (4(7 + 1) + 1)st (5 < 4(i + 1) + 1 < s) batch, it
will have 7 hits and 0 miss.

For our batch-FIF algorithm, after the (47 + 1)st (1 <
44 + 1 < s) batch, it saves (1, 2,3, -+, 7 — 1, 7) in online
cache. In the (4i + 2)nd (2 < 47 + 2 < s) batch, it will have
(7 —1) hits and 1 miss. After the (4i+2)nd 2 < 4i+2 < s)
batch, it saves (7,2, 3, ---, 7—1, 7+ 1) in online cache. In the
41+ 3)rd (3 < 47+ 3 < s) batch, it will have (7 — 1) hits and
1 miss. After the (4i + 3)rd (3 < 4i 4+ 3 < s) batch, it saves
1,2,3,---,7—1, 7+ 1) in online cache. In the (47 4+ 4)th
(4 < 4i + 4 < s) batch, it will have (7 — 1) hits and 1 miss.
After the (47 4 4)th (4 < 4i + 4 < s) batch, it saves (7 + 1,
2,3,---,7—1,7) in online cache. In the (4(¢ + 1) + 1)st
(5 <4(i+ 1)+ 1 < s) batch, it will have (7 — 1) hits and 1
miss.

Thus, we have

costy (batch-FIF) m

= — = 17
cost (FIF) m

4(i+1)+1

> cost;(batch-FIF)
j=4i+2 _é_g (1 >0N4i+5<5s)

At 1)+1 2 - T

Y. cost;(FIF)
j=di+2

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

X: 231456 231678 2318910

Batch 1 Batch 2 . Batch 3
=4 m=6 i Online Cache | Offline Cache i
After Batch 1: i 5614 E 2316 i
After Batch2: | 8617 | 2318 |
After Batch3: | 89110 | 23110 |
of Misses: i 6+4+4 E 6+2+2 i

Fig. 27. An example of case A.3) @.

2:12345671237891012310111213

Batch 1 Batch 2 . Batch 3
t=4 m=17 i Online Cache | Offline Cache i
After Batch 1: i 5674 i 1237 i
After Batch2: | 91078 @ 12310 |
After Batch3: | 13101112 12313 |
of Misses: i 7+6+6 i 7+3+3 i

Fig. 28. An example of case A.3) ®.

Therefore, when s is large enough, we have p(batch-FIF)
> costior(batch-FIF) / costyo (FIF) = 2.

Case @:7>3and7+1<m<2r—2

An example is shown in Figure 27. Suppose that the ith
(1 <4 < s) batch contains m; = m data block IDs (27 — m,
2r—-m+1,---,7—-1,1,2,---,21 —m —1, end;_1, new; 1,
new; s, -+, New; ;,—r—1, end;), where all the end;’s (0 <
j < s)and all the new; ;'s (1 < f < m — 7 — 1) are distinct
from each other and do not reside in [1, 7 — 1]. Particularly,
when m = 7 + 1, the ith (1 < i < s) batch should contain
m; = m = 7+ 1 data block IDs 27 — m, 2r —m+1, ---,
T7—1,1,2,---,21r —m — 1, end;_q, end;).

For FIF algorithm, after processing the ith (1 < i < s)
batch, it saves (1, 2, ---, 7 — 1, end;) in offline cache. Thus,
in the (1 + 1)st (2 < i+ 1 < s) batch, it will have 7 cache hits
and have (m — 7) cache misses.

For our batch-FIF algorithm, after processing the ith (1 <
1 < s) batch, it saves (1, 2, - -+, 21 —m — 1, end;_1, new; 1,
new; o, - -+, NeW; m—r—1, €nd;) in online cache. Particularly,
whenm = 7+1,itsaves (1,2,---,2r—m—1, end;_1, end;)
in online cache. Thus, in the (i + 1)st (2 < i+ 1 < s) batch,
it will have (27 — m) cache hits (1,2, ---, 27 — m — 1, end;)
and have 2(m — 7) cache misses.

Thus, we have

B {m/m:l
B 2m—7)/(m—71) =2

cost; (batch-FIF)
cost; (FIF)

(i=1)

Therefore, when s is large enough, we have p(batch-FIF)
> costyot (batch-FIF) / costyo (FIF) = 2.

Case ®:7>3and m =27 —1

An example is shown in Figure 28. Suppose that the ith
(1 < i <) batch contains m; = m = 27 — 1 data block
IDs (1,2, -+, 7 — 1, end;—1, new; 1, new; o, - -+, New; r_o,
end;), where all the end;’s (0 < j < s) and all the new; ¢’s
(1 < f < 7 —2) are distinct from each other and do not
reside in [1,7 — 1].

(2<i<ys).

For FIF algorithm, after processing the ith (1 < i < s)
batch, it saves (1, 2, - - -, 7 — 1, end;) in offline cache. Thus,
in the (1 + 1)st (2 < i+ 1 < s) batch, it will have 7 cache hits
and have (m — 7) = (7 — 1) cache misses.

For our batch-FIF algorithm, after processing the 7th (1 <
1 < s) batch, it saves (end;_1, new; 1, new; g, - - -, New; o,
end;) in online cache. Thus, inthe (i + I)st 2 < i+ 1 < s)
batch, it will have 1 cache hit (end;) and have (m — 1) =
(27 — 2) cache misses.

Thus, we have

cost; (batch-FIF)
cost; (FIF)

_Jm/m=1 (i=1)
|l @r-2)/(r—-1)=2 (2<i<s).
Therefore, when s is large enough, we have p(batch-FIF)
> costior(batch-FIF) / costor (FIF) = 2.
3° Based on 1° and 2°, the conclusion in A.3) is proven.
O

	oqf-tkde22
	oqf-tkde22-long - 副本

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

